请输入您要查询的百科知识:

 

词条 I = PAT
释义

  1. History

  2. The dependent variable: Impact

  3. The three factors

     Population  Environmental impacts of population  Affluence  Environmental impacts of affluence  Technology  Environmental impacts of technology 

  4. Criticism

     Interdependencies  Neglect of beneficial human impacts  Neglect of political and social contexts  Policy implications 

  5. See also

  6. References

{{Use dmy dates|date=May 2016}}

I = PAT is the mathematical notation of a formula put forward to describe the impact of human activity on the environment.

I = P × A × T

The expression equates human impact on the environment (I) to the product of three factors: population (P), affluence (A) and technology (T). It is similar in form to the Kaya identity which applies specifically to emissions of the greenhouse gas carbon dioxide.

The validity of expressing environmental impact as a simple product of independent factors, and the factors that should be included and their comparative importance, have been the subject of debate among environmentalists. In particular, some have drawn attention to potential inter-relationships among the three factors; and others have wished to stress other factors not included in the formula, such as political and social structures, and the scope for beneficial, as well as harmful, environmental actions.

History

The equation was developed in 1970 during the course of a debate between Barry Commoner, Paul R. Ehrlich and John Holdren. Commoner argued that environmental impacts in the United States were caused primarily by changes in its production technology following World War II and aimed his thoughts on present day deteriorating environmental conditions in the U.S. Ehrlich and Holdren argued that all three factors were important and emphasized in particular the role of human population growth, but focused more on a broader scale, being less specific in space and time.[1][2][3][4]

The equation can aid in understanding some of the factors affecting human impacts on the environment,[5] but it has also been cited as a basis for many of the dire environmental predictions of the 1970s by Paul Ehrlich, George Wald, Denis Hayes, Lester Brown, René Dubos, and Sidney Ripley that did not come to pass.[6] Neal Koblitz classified equations of this type as "mathematical propaganda" and criticized Ehrlich's use of them in the media (e.g. on The Tonight Show) to sway the general public.[7]

The dependent variable: Impact

The variable "I" in the "I=PAT" equation represents environmental impact. The environment may be viewed as a self-regenerating system that can sustain a certain level of impact sustainably. The maximum sustainable impact is called the carrying capacity. As long as "I" is less than this amount the associated population, affluence, and technology that make up "I" are sustainable. If "I" exceeds the carrying capacity, then the system is said to be in overshoot, which can only be a temporary state. Overshoot may degrade the ability of the environment to sustain impact, therefore reducing the carrying capacity.

Impact may be measured using ecological footprint analysis in units of global hectares (gha). Ecological footprint per capita is a measure of the quantity of Earth's biologically productive surface that is needed to regenerate the resources consumed per capita.

Impact is modeled as the product of three terms, giving gha as a result. Population is expressed in human numbers, therefore Affluence is measured in units of gha per capita. Technology is a unitless efficiency factor.

The three factors

Population

{{See also|World population|Human overpopulation}}

In the I=PAT equation, the variable P represents the population of an area, such as the world. Since the rise of industrial societies, human population has been increasing exponentially. This has caused Thomas Malthus, Paul Ehrlich and many others{{Who|date=February 2011}} to postulate that this growth would continue until checked by widespread hunger and famine (see Malthusian growth model).

The United Nations project that world population will increase from 7.6 billion today (2018) to 9.8 billion in 2050 and about 11.2 billion in 2100.[8]

These projections take into consideration that population growth has slowed in recent years as women are having fewer children. This phenomenon is the result of demographic transition all over the world. Although the UN projects that human population may stabilize at around 11.2 billion in 2100, the I=PAT equation will continue to be relevant for the increasing human impact on the environment in the short to mid-term future.

Environmental impacts of population

Increased population increases humans' environmental impact in many ways, which include but are not limited to:

  • Increased land use - Results in habitat loss for other species.
  • Increased resource use - Results in changes in land cover
  • Increased pollution - Can cause sickness and damages ecosystems.
  • Increased climate change

Affluence

{{Main|Consumption (economics)}}

The variable A, in the I=PAT equation stands for affluence. It represents the average consumption of each person in the population. As the consumption of each person increases, the total environmental impact increases as well. A common proxy for measuring consumption is through GDP per capita. While GDP per capita measures production, it is often assumed that consumption increases when production increases. GDP per capita has been rising steadily over the last few centuries and is driving up human impact in the I=PAT equation.

Environmental impacts of affluence

Increased consumption significantly increases human environmental impact. This is because each product consumed has wide-ranging effects on the environment. For example, the construction of a car has the following environmental impacts:

  • 605,664 gallons of water for parts and tires[9]
  • 682 lbs. of pollution at a mine for the lead battery.[9]
  • 2178 lbs. of discharge into water supply for the 22 lbs. of copper contained in the car.[9]

The more cars per capita, the greater the impact.

Ecological impacts of each product are far reaching, increases in consumption quickly result in large impacts on the environment through direct and indirect sources.

Technology

{{See also|Environmental technology|Appropriate technology}}

The T variable in the I=PAT equation represents how resource intensive the production of affluence is; how much environmental impact is involved in creating, transporting and disposing of the goods, services and amenities used. Improvements in efficiency can reduce resource intensiveness, reducing the T multiplier. Since technology can affect environmental impact in many different ways, the unit for T is often tailored for the situation I=PAT is being applied to. For example, for a situation where the human impact on climate change is being measured, an appropriate unit for T might be greenhouse gas emissions per unit of GDP.

Environmental impacts of technology

Increases in efficiency can reduce overall environmental impact. However, since P has increased exponentially, and A has also increased drastically, the overall environmental impact, I, has still increased.

Criticism

Criticisms of the "I=PAT" formula

  • Too Simplistic for complex problem
  • Inter dependencies between variables
  • General sweeping assumptions of variables’ effect toward environmental impact
  • Cultural differences cause wide variation in impact
  • Technology cannot properly be expressed in a unit. Varying the unit will prove to be inaccurate, as the result of the calculation depends on one’s view of the situation

Interdependencies

The I=PAT equation has been criticized for being too simplistic by assuming that P, A, and T are independent of each other. In reality, at least 7 interdependencies between P, A, and T could exist, indicating that it is more correct to rewrite the equation as I = f(P,A,T).[10] For example, a doubling of technological efficiency, or equivalently a reduction of the T-factor by 50%, does not necessarily reduce the environmental impact (I) by 50% if efficiency induced price reductions stimulate additional consumption of the resource that was supposed to be conserved, a phenomenon called the rebound effect (conservation) or Jevons Paradox. As was shown by Alcott,[10]{{rp|Fig. 5}} despite significant improvements in the carbon intensity of GDP (i.e., the efficiency in carbon use) since 1980, world fossil energy consumption has increased in line with economic and population growth. Similarly, an extensive historical analysis of technological efficiency improvements has conclusively shown that improvements in the efficiency of energy and material use were almost always outpaced by economic growth, resulting in a net increase in resource use and associated pollution.[11][12]

Neglect of beneficial human impacts

There have also been comments that this model depicts people as being purely detrimental to the environment, ignoring any conservation or restoration efforts that societies have made.[13]

Neglect of political and social contexts

Another major criticism of the I=PAT model is that it ignores the political context and decision making structures of countries and groups. This means the equation does not account for varying degrees of power, influence, and responsibility of individuals over environmental impact.[13] Also, the P factor does not account for the complexity of social structures or behaviors, resulting in blame being placed on the global poor.[13] I=PAT does not account for sustainable resource use among some poor and indigenous populations, unfairly characterizing these populations whose cultures support low impact practices.[13] However, the latter criticism not only assumes low impacts for indigenous populations, but also misunderstands the I=PAT equation itself. Environmental impact is a function of human numbers, affluence (ie resources consumed per capita) and technology. It is assumed that small scale societies have low environmental impacts due to their practices and orientations alone but there is little evidence to support this[14][15]. In fact the generally low impact of small scale societies compared to state societies is due to a combination of their small numbers and low level technology. Thus, the environmental sustainability of these societies is largely an epiphenomenon due their inability to significantly affect their environment[16][17]. That all types of societies are subject to I=PAT was actually made clear in Ehrlich and Holdren's 1972 dialogue with Commoner in The Bulletin of the Atomic Scientists[4] where they examine the pre-industrial (and indeed prehistoric) impact of human beings on the environment. Their position is further clarified by Holdren's 1993 paper, A Brief History of "IPAT"[18].

Policy implications

As a result of the interdependencies between P, A, and T and potential rebound effects, policies aimed at decreasing environmental impacts through reductions in P, A, and T may not only be very difficult to implement (e.g., population control and material sufficiency and degrowth movements have been very controversial) but also are likely to be rather ineffective compared to rationing (i.e., quotas) or Pigouvian taxation of resource use or pollution.[10]

See also

  • Affluence
  • Carbon footprint
  • Eco-economic decoupling
  • Ecological footprint
  • Ecological indicator
  • Embodied energy
  • Kaya identity
  • Life cycle assessment
  • Population growth
  • Sustainability measurement
  • Sustainability metrics and indices
  • Technology
  • Water footprint

References

1. ^{{cite book | last1 = O'Neill | first1 = B.C. |last2 = MacKellar | first2 = F.L. | first3 = W.| last3= Lutz | date = 2004 | chapter = Population, greenhouse gas emissions, and climate change | title = The End of World Population Growth in the 21st Century: New Challenges for Human Capital Formation & Sustainable Development | editor1-first = W. | editor1-last = Lutz | editor2-first = W.C. | editor2-last= Sanderson | editor3-first= S. | editor3-last = Scherbov | publisher = Earthscan Press | location = London | pages = 283–314}}
2. ^{{Cite journal | last1 = Ehrlich | first1 = Paul R. | authorlink1 = Paul R. Ehrlich | last2 =Holdren | first2 = John P. | authorlink2 = John Holdren | year = 1971 | title = Impact of Population Growth | journal = Science | volume = 171 | issue = 3977 | pages = 1212–1217 | publisher = American Association for the Advancement of Science | jstor = 1731166 | url = | format = | accessdate = | doi=10.1126/science.171.3977.1212}}
3. ^{{Cite journal|last=Chertow|first=Marian|year=2001|title=The IPAT Equation and Its Variants|journal=Changing Views of Technology and Environmental Impact}}
4. ^{{cite journal |journal=Bulletin of the Atomic Scientists |author= Barry Commoner | authorlink = Barry Commoner |date=May 1972 |title=A Bulletin Dialogue: on "The Closing Circle" - Response |url=https://books.google.com/?id=pwsAAAAAMBAJ&pg=PA17 |volume=28 |issue=5 |pages=17, 42–56 }} —— {{Cite journal |url=https://books.google.co.uk/books?id=pwsAAAAAMBAJ&pg=PA16 |date=May 1972 |title=A Bulletin Dialogue: on "The Closing Circle" - Critique |journal=Bulletin of the Atomic Scientists |last=Ehrlich |first=P.R. |last2=Holdren |first2=J.P |volume=28 |issue=5 |pages=16, 18–27}}
5. ^{{Cite journal | last1 = Chertow | first1 = M. R. | authorlink1 = Marian Chertow| title = The IPAT Equation and Its Variants | doi = 10.1162/10881980052541927 | journal = Journal of Industrial Ecology | volume = 4 | issue = 4 | pages = 13–29 | year = 2000 | pmid = | pmc = }}
6. ^R Bailey (2000) Earth day then and now, Reason 32(1), 18-28
7. ^N Koblitz (1981) "Mathematics as Propaganda", in Mathematics Tomorrow, ed. Lynn Steen, pp 111-120.
8. ^{{Cite web|url=https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf|title=Population Prospects 2017|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}
9. ^{{Cite journal | last1 = Andriantiatsaholiniaina | first1 = L. A. | last2 = Kouikoglou | first2 = V. S. | last3 = Phillis | first3 = Y. A. | doi = 10.1016/j.ecolecon.2003.08.009 | title = Evaluating strategies for sustainable development: Fuzzy logic reasoning and sensitivity analysis |journal = Ecological Economics| volume = 48 | issue = 2 | pages = 149 | year = 2004 | pmid = | pmc = }}
10. ^{{Cite journal | last1 = Alcott | first1 = B. | title = Impact caps: Why population, affluence and technology strategies should be abandoned | doi = 10.1016/j.jclepro.2009.08.001 | journal = Journal of Cleaner Production | volume = 18 | issue = 6 | pages = 552–560 | year = 2010 | pmid = | pmc = }}
11. ^Huesemann, Michael H., and Joyce A. Huesemann (2011). Technofix: Why Technology Won’t Save Us or the Environment, Chapter 5, "In Search of Solutions II: Efficiency Improvements", New Society Publishers, Gabriola Island, British Columbia, Canada, {{ISBN|0865717044}}, 464 pp.
12. ^{{Cite journal | last1 = Cleveland | first1 = C. J. | last2 = Ruth | first2 = M. | doi = 10.1162/jiec.1998.2.3.15 | title = Indicators of Dematerialization and the Materials Intensity of Use | journal = Journal of Industrial Ecology | volume = 2 | issue = 3 | pages = 15 | year = 1998 | pmid = | pmc = }}≥
13. ^{{Cite book |title=An Introduction to Human-Environment Geography: Local Dynamics and Global Processes |last=Moseley |first=William |last2=Perramond |first2=Eric |last3=Hapke |first3=Holly |last4=Laris |first4=Paul |publisher=Wiley Blackwell |year=2014 |isbn=9781405189316 |location=Hoboken, NJ |pages=241–242}}
14. ^{{Cite book |title=Primitive polluters : Semang impact on the Malaysian tropical rain forest ecosystem |last=Rambo |first=A. Terry |date=1985 |publisher=Museum of Anthropology, University of Michigan |isbn=0915703041 |location=Ann Arbor, Mich. |oclc=13516436}}
15. ^{{Cite book |title=The ecological Indian : myth and history |last=Krech |first=Shepard, III |date=1999 |publisher=W.W. Norton & Co |isbn=0393321002 |edition=1st |location=New York |oclc=40762824}}
16. ^{{Cite journal|last=Smith|first=Eric Alden|last2=Wishnie|first2=Mark|date=2000|title=Conservation and Subsistence in Small-Scale Societies|url=https://doi.org/10.1146/annurev.anthro.29.1.493|journal=Annual Review of Anthropology|volume=29|issue=1|pages=493–524|doi=10.1146/annurev.anthro.29.1.493}}
17. ^{{Cite journal|last=Hames|first=Raymond|date=2007|title=The Ecologically Noble Savage Debate|url=https://doi.org/10.1146/annurev.anthro.35.081705.123321|journal=Annual Review of Anthropology|volume=36|issue=1|pages=177–190 |doi=10.1146/annurev.anthro.35.081705.123321}}
18. ^{{Cite news |url=https://mahb.stanford.edu/blog/review-anthrozoology/|title=Paul Ehrlich reviews Tobias and Morrison’s most recent book –“Anthrozoology: Embracing Co-Existence in the Anthropocene” |date=2017-01-31|work=MAHB|access-date=2018-04-16|language=en-US}}
{{Population}}{{Sustainability}}{{Portal bar|Environment|Sustainable development}}{{DEFAULTSORT:I equals PAT}}

6 : Human impact on the environment|Environmental social science concepts|Equations|Human geography|Technology forecasting|Population ecology

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 9:05:17