请输入您要查询的百科知识:

 

词条 ISFET
释义

  1. Practical limitations due to the reference electrode

  2. See also

  3. References

  4. Further reading

{{about|the transistor|the concept in Egyptian mythology|Isfet (Egyptian mythology)}}

An ISFET is an ion-sensitive field-effect transistor, that is a field-effect transistor used for measuring ion concentrations in solution; when the ion concentration (such as H+, see pH scale) changes, the current through the transistor will change accordingly. Here, the solution is used as the gate electrode. A voltage between substrate and oxide surfaces arises due to an ion sheath.

The surface hydrolysis of Si–OH groups of the gate materials varies in aqueous solutions due to pH value. Typical gate materials are SiO2, Si3N4, Al2O3 and Ta2O5.

The mechanism responsible for the oxide surface charge can be described by the site binding model, which describes the equilibrium between the Si–OH surface sites and the H+ ions in the solution. The hydroxyl groups coating an oxide surface such as that of SiO2 can donate or accept a proton and thus behave in an amphoteric way as illustrated by the following acid-base reactions occurring at the oxide-electrolyte interface:

—Si–OH + H2O     ↔   —Si–O     + H3O+

—Si–OH + H3O+   ↔   —Si–OH2+ + H2O

An ISFET's source and drain are constructed as for a MOSFET. The gate electrode is separated from the channel by a barrier which is sensitive to hydrogen ions and a gap to allow the substance under test to come in contact with the sensitive barrier. An ISFET's threshold voltage depends on the pH of the substance in contact with its ion-sensitive barrier.

ISFET was invented by Piet Bergveld in 1970.[1]

Practical limitations due to the reference electrode

An ISFET electrode sensitive to H+ concentration can be used as a conventional glass electrode to measure the pH of a solution. However, it also requires a reference electrode to operate. If the reference electrode used in contact with the solution is of the AgCl or HgCl2 classical type, it will suffer the same limitations as conventional pH electrodes (junction potential, KCl leak, and glycerol leak in case of gel electrode). A conventional reference electrode can also be bulky and fragile. A too large volume constrained by a classical reference electrode also precludes the miniaturization of the ISFET electrode, a mandatory feature for some biological or in vivo clinical analyses (disposable mini-catheter pH probe). The breakdown of a conventional reference electrode could also make problem in on-line measurements in the pharmaceutical or food industry if highly valuable products are contaminated by electrode debris or toxic chemical compounds at a late production stage and must be discarded for the sake of safety.

For this reason, since more than 20 years many research efforts have been dedicated to on-chip embarked tiny reference field effect transistors (REFET). Their functioning principle, or operating mode, can vary, depending on the electrode producers and are often proprietary and protected by patents. Semi-conductor modified surfaces required for REFET are also not always in thermodynamical equilibrium with the test solution and can be sensitive to aggressive or interfering dissolved species or not well characterized aging phenomena. This is not a real problem if the electrode can be frequently re-calibrated at regular time interval and is easily maintained during its service life. However, this may be an issue if the electrode has to remain immersed on-line for prolonged period of time, or is inaccessible for particular constrains related to the nature of the measurements itself (geochemical measurements under elevated water pressure in harsh environments or under anoxic or reducing conditions easily disturbed by atmospheric oxygen ingress or pressure changes).

A crucial factor for ISFET electrodes, as for conventional glass electrodes, remains thus the reference electrode. When troubleshooting electrode malfunctions, often, most of the problems have to be searched for from the side of the reference electrode.

See also

  • Chemical field-effect transistor
  • Ion-selective electrodes
  • MISFET: metal–insulator–semiconductor field-effect transistor
  • MOSFET: metal–oxide–semiconductor field-effect transistor
  • pH
  • pH meter
  • Potentiometry
  • Quinhydrone electrode
  • Saturated calomel electrode
  • Silver chloride electrode
  • Standard hydrogen electrode

References

1. ^{{cite web|author=Chris Toumazou and Pantelis Georgiou |url=https://www.researchgate.net/publication/260616066 |title=40 years of ISFET technology:From neuronal sensing to DNA sequencing |publisher=Electronics Letters |date=December 2011 |accessdate=13 May 2016}}
  • {{Cite journal

| last = Bergveld
| first = P.
| year = 2003
| title = Thirty years of ISFETOLOGY, What happened in the past 30 years and what may happen in the next 30 years
| journal = Sensors and Actuators B: Chemical
| volume = 88
| pages = 1–20
| doi=10.1016/S0925-4005(02)00301-5
}}
  • {{Cite conference

| last = Bergveld
| first = P.
| year = 2003
| title = ISFET, theory and practice
| conference = IEEE Sensor Conference, October 2003
| pages = 26
| publisher = IEEE
| location = Toronto
| url = http://ieee-sensors.org/wp-content/uploads/2011/08/ISFET-Bergveld.pdf
}}
  • ISFET pH Sensors

Further reading

  • {{Cite journal

| doi = 10.1038/nature10242
| issn = 1476-4687
| volume = 475
| issue = 7356
| pages = 348–52
| last = Rothberg
| first = Johnathan M
| title = An integrated semiconductor device enabling non-optical genome sequencing
| journal = Nature
| year = 2011
| pmid=21776081
}}
  • {{Cite journal

| doi = 10.1016/0250-6874(85)87009-8
| issn = 0250-6874
| volume = 8
| issue = 2
| pages = 109–127
| last = Bergveld
| first = P.
| title = The impact of MOSFET-based sensors
| journal = Sensors and Actuators
| year = 1985
| url = https://research.utwente.nl/en/publications/the-impact-of-mosfetbased-sensors(23b4c4db-1263-4223-9aa7-dc53225dcd95).html
}}
  • {{Cite journal

| doi = 10.1016/0265-928X(86)85010-6
| pmid = 3790175
| issn = 0265-928X
| volume = 2
| issue = 1
| pages = 15–33
| last = Bergveld
| first = P.
| title = The development and application of FET-based biosensors
| journal = Biosensors
| year = 1986
| url = https://research.utwente.nl/en/publications/the-development-and-application-of-fetbased-biosensors(db7e03f2-aeab-47ee-9b35-c390a1c51dc2).html
}}
  • {{Cite journal

| doi = 10.1016/0956-5663(91)85009-L
| issn = 0956-5663
| volume = 6
| issue = 1
| pages = 55–72
| last = Bergveld
| first = P.
| title = A critical evaluation of direct electrical protein detection methods
| journal = Biosensors and Bioelectronics
| year = 1991
| url = https://research.utwente.nl/en/publications/a-critical-evaluation-of-direct-electrical-protein-detection-methods(668a0490-5fec-45f4-81d5-99d991f859de).html
}}
  • {{Cite journal

| doi = 10.1016/S0925-4005(02)00301-5
| issn = 0925-4005
| volume = 88
| issue = 1
| pages = 1–20
| last = Bergveld
| first = P.
| title = Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years
| journal = Sensors and Actuators B: Chemical
| year = 2003
}}
  • {{Cite conference

|publisher = IEEE
|conference = IEEE Sensor Conference Toronto, October 2003
|pages = 26 pp.
|last = Bergveld
|first = P.
|title = ISFET, theory and practice
|location = Toronto
|year = 2003
|url = http://www.ewh.ieee.org/tc/sensors/Tutorials/ISFET-Bergveld.pdf
|deadurl = yes
|archiveurl = https://web.archive.org/web/20080820022300/http://www.ewh.ieee.org/tc/sensors/Tutorials/ISFET-Bergveld.pdf
|archivedate = 2008-08-20
|df =
}}
  • {{Cite journal

| issn = 0250-6874
| volume = 18
| issue = 3–4
| pages = 309–327
| last = Bergveld
| first = P
|author2=A Van den Berg |author3=PD Van der Wal |author4=M Skowronska-Ptasinska |author5=EJR Sudhölter |author6=DN Reinhoudt
| title = How electrical and chemical requirements for REFETs may coincide
| journal = Sensors and Actuators
| year = 1989
| doi=10.1016/0250-6874(89)87038-6
| url = https://research.utwente.nl/en/publications/how-electrical-and-chemical-requirements-for-refets-may-coincide(fe2bee67-5611-4153-8341-a04f9b21cc26).html
}}
  • {{Cite journal

| issn = 0925-4005
| volume = 57
| issue = 1–3
| pages = 47–50
| last = Chudy
| first = M
|author2=W Wróblewski |author3=Z Brzózka
| title = Towards REFET
| journal = Sensors and Actuators B: Chemical
| year = 1999
| doi=10.1016/S0925-4005(99)00134-3
}}
  • {{Cite journal

| doi = 10.1016/S0925-4005(99)00134-3
| issn = 0925-4005
| volume = 57
| issue = 1–3
| pages = 47–50
| last = Chudy
| first = Michal
| author2 = Wojciech Wróblewski
| author3 =Zbigniew Brzózka
| title = Towards REFET
| journal = Sensors and Actuators B: Chemical
| year = 1999
}}
  • {{Cite journal

| doi = 10.1016/0925-4005(93)87002-7
| issn = 0925-4005
| volume = 10
| issue = 3
| pages = 169–178
| last = Collins
| first = S.D.
| title = Practical limits for solid-state reference electrodes
| journal = Sensors and Actuators B: Chemical
| year = 1993
}}
  • {{Cite journal

| issn = 0017-5749
| volume = 32
| issue = 3
| pages = 240–245
| last = Duroux
| first = P
|author2=C Emde |author3=P Bauerfeind |author4=C Francis |author5=A Grisel |author6=L Thybaud |author7=D Armstrong |author8=C Depeursinge |author9=A L Blum
| title = The ion sensitive field effect transistor (ISFET) pH electrode: a new sensor for long term ambulatory pH monitoring.
| journal = Gut
| year = 1991
| doi=10.1136/gut.32.3.240
| pmid = 2013417
|pmc=1378826}}
  • {{Cite journal

| doi = 10.1016/S0925-4005(99)00242-7
| issn = 0925-4005
| volume = 60
| issue = 1
| pages = 43–48
| last = Errachid
| first = A.
|author2=J. Bausells |author3=N. Jaffrezic-Renault
| title = A simple REFET for pH detection in differential mode
| journal = Sensors and Actuators B: Chemical
| accessdate = 2010-11-01
| year = 1999
| url = http://www.sciencedirect.com/science/article/B6THH-3Y9R69K-3N/2/aeb72a1c32e88072b67dda7074880bfb
}}
  • {{Cite conference

| doi = 10.1109/ICMENS.2003.1222002
| conference = International Conference on MEMS, NANO and Smart Systems
| pages = 255–258
| last = Ghallab
| first = Y.H. |author2=W. Badawy |author3=K.V.I.S. Kaler
| title = A novel pH sensor using differential ISFET current mode read-out circuit
| booktitle = Proceedings International Conference on MEMS, NANO and Smart Systems
| location = Banff, Alta., Canada
}}
  • {{Cite journal

| issn = 1432-8488
| volume = 13
| issue = 1
| pages = 27–39
| last = Guth
| first = U
|author2=F Gerlach |author3=M Decker |author4=W Oelßner |author5=W Vonau
| title = Solid-state reference electrodes for potentiometric sensors
| journal = Journal of Solid State Electrochemistry
| year = 2009
| doi=10.1007/s10008-008-0574-7
}}
  • {{Cite journal

| last = Huang
| first = I-Yu
| title = Chemical sensors research group
| accessdate = 2010-11-01
| url = http://csrg.ch.pw.edu.pl/tutorials/isfet/
}}
  • {{Cite journal

| volume = 25
| issue = 3
| pages = 327–334
| last = Huang
| first = I-Yu |author2=Ruey-Shing Huang |author3=Lieh-Hsi Lo
| title = A new structured ISFET with integrated Ti/Pd/Ag/AgCl Electrode and micromachined back-side P+ contacts
| journal = Journal of the Chinese Institute of Engineers
| accessdate = 2010-11-01
| year = 2002
| url = http://140.118.16.82/www/index.php/JCIE/article/viewFile/1681/897
| doi=10.1080/02533839.2002.9670707
}}
  • {{Cite conference

| last = Kal
| first = S.
|author2=P.V. Bhanu
| year = 2007
| title = Design and modeling of ISFET for pH sensing
| conference = TENCON 2007 - 2007 IEEE Region 10 Conference
| location = Taipei
| booktitle = IEEE
| pages = 1–4
| isbn = 978-1-4244-1272-3
| doi = 10.1109/TENCON.2007.4428805
| url = http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4428805
| accessdate = 2010-10-31
}}
  • {{Cite journal

| doi = 10.1016/j.bioelechem.2006.09.006
| pmid = 17107827
| issn = 1567-5394
| volume = 71
| issue = 1
| pages = 75–80
| last = Kisiel
| first = Anna
|author2=Agata Michalska |author3=Krzysztof Maksymiuk
| title = Plastic reference electrodes and plastic potentiometric cells with dispersion cast poly(3,4-ethylenedioxythiophene) and poly(vinyl chloride) based membranes
| journal = Bioelectrochemistry
| date = September 2007
}}
  • {{Cite journal

| issn = 0374-4884
| volume = 40
| issue = 4
| pages = 601–604
| last = Lee
| first = YC
|author2=BK Sohn
| title = Development of an FET-type reference electrode for pH detection
| journal = Journal-Korean Physical Society
| year = 2002
| doi = 10.3938/jkps.40.601
| bibcode = 2002JKPS...40..601Y
}}
  • {{Cite journal

| doi = 10.1016/0925-4005(93)85057-H
| issn = 0925-4005
| volume = 15
| issue = 1–3
| pages = 228–232
| last = Lisdat
| first = F.
|author2=W. Moritz
| title = A reference element based on a solid-state structure
| journal = Sensors and Actuators B: Chemical
| date = August 1993
}}
  • {{Cite journal

| issn = 0003-2670
| volume = 230
| pages = 67–73
| last = Skowronska-Ptasinska
| first = M
|author2=PD Van Der Wal |author3=A Van Den Berg |author4=P Bergveld |author5=EJR Sudhölter |author6=DN Reinhoudt
| title = Reference field effect transistors based on chemically modified ISFETs
| journal = Analytica Chimica Acta
| year = 1990
| doi=10.1016/s0003-2670(00)82762-2
}}
  • {{Cite journal

| doi = 10.1016/S0925-4005(98)00110-5
| issn = 0925-4005
| volume = 46
| issue = 2
| pages = 146–154
| last = Suzuki
| first = Hiroaki
|author2=Taishi Hirakawa |author3=Satoshi Sasaki |author4=Isao Karube
| title = Micromachined liquid-junction Ag/AgCl reference electrode
| journal = Sensors and Actuators B: Chemical
| date = 1998-02-15
}}
  • {{Cite journal

| doi = 10.1016/0925-4005(90)80243-S
| issn = 0925-4005
| volume = 1
| issue = 1–6
| pages = 425–432
| last = van den Berg
| first = A.
| author2 = A. Grisel
| author3 = H.H. van den Vlekkert
| author4 = N.F. de Rooij
| title = A micro-volume open liquid-junction reference electrode for pH-ISFETs
| journal = Sensors and Actuators B: Chemical
| date = January 1990
}}
  • {{Cite journal

| doi = 10.1016/j.snb.2008.12.001
| issn = 0925-4005
| volume = 144
| issue = 2
| pages = 368–373
| last = Vonau
| first = W.
| author2 = W. Oelßner
| author3 = U. Guth
| author4 = J. Henze
| title = An all-solid-state reference electrode
| journal = Sensors and Actuators B: Chemical
| date = 2010-02-17
}}

7 : Acid–base chemistry|Electrochemistry|Electrodes|Measuring instruments|Sensors|Transistor types|FETs

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/29 9:20:47