请输入您要查询的百科知识:

 

词条 Isotopes of nihonium
释义

  1. List of isotopes

     Notes 

  2. Isotopes and nuclear properties

     Nucleosynthesis  Cold fusion  Hot fusion  As decay product  Theoretical calculations  Evaporation residue cross sections 

  3. References

{{infobox nihonium isotopes}}

Nihonium (113Nh) is a synthetic element. Being synthetic, a standard atomic weight cannot be given and like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 284Nh as a decay product of 288Mc in 2003. The first isotope to be directly synthesized was 278Nh in 2004. There are 6 known radioisotopes from 278Nh to 286Nh, along with the unconfirmed 290Nh. The longest-lived isotope is 286Nh with a half-life of 8 seconds.

List of isotopes

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life decay
mode(s)
daughter
isotope(s)
nuclear
spin and
parity

278Nh 113 165 278.17058(20)# 1.4 ms α 274Rg

282Nh 113 169 282.17567(39)# 73 ms α 278Rg
283Nh[1] 113 170 283.17657(52)# 75 ms α 279Rg
284Nh[2]113171284.17873(62)#0.91 s α (96.8%) 280Rg 
EC (3.2%)[3] 284Cn
285Nh[4] 113 172 285.17973(89)# 4.2 s α 281Rg
286Nh[5] 113 173 286.18221(72)# 9.5 s α 282Rg
287Nh[6] 113 174 287.18339(81)# 5.5 s α 283Rg
290Nh[7] 113 177 2 s? α 286Rg
1. ^Not directly synthesized, occurs as decay product of 287Mc
2. ^Not directly synthesized, occurs as decay product of 288Mc
3. ^http://xxx.lanl.gov/pdf/1502.03030.pdf
4. ^Not directly synthesized, occurs in decay chain of 293Ts
5. ^Not directly synthesized, occurs in decay chain of 294Ts
6. ^Not directly synthesized, occurs in decay chain of 287Fl and possibly 299Ubn; unconfirmed
7. ^Not directly synthesized, occurs in decay chain of 290Fl and 294Lv; unconfirmed
8. ^{{Cite journal |first=Peter |last=Armbruster |lastauthoramp=yes |first2=Gottfried |last2=Münzenberg |title=Creating superheavy elements |journal=Scientific American |volume=34 |pages=36–42 |year=1989}}
9. ^{{cite journal |last1=Barber |first1=Robert C. |last2=Gäggeler |first2=Heinz W. |last3=Karol |first3=Paul J. |last4=Nakahara |first4=Hiromichi |last5=Vardaci |first5=Emanuele |last6=Vogt |first6=Erich |title=Discovery of the element with atomic number 112 (IUPAC Technical Report) |journal=Pure and Applied Chemistry |volume=81 |issue=7 |page=1331 |year=2009 |doi=10.1351/PAC-REP-08-03-05}}
10. ^{{cite journal |last1=Fleischmann |first1=Martin |last2=Pons |first2=Stanley |year=1989 |title=Electrochemically induced nuclear fusion of deuterium |journal=Journal of Electroanalytical Chemistry and Interfacial Electrochemistry |volume=261 |issue=2 |pages=301–308 |doi=10.1016/0022-0728(89)80006-3 |url=http://www.sciencedirect.com/science/article/pii/0022072889800063 |accessdate=15 October 2012}}
11. ^"Search for element 113" {{webarchive|url=https://web.archive.org/web/20120219002417/http://www.gsi.de/informationen/wti/library/scientificreport2003/files/1.pdf |date=2012-02-19 }}, Hofmann et al., GSI report 2003. Retrieved on 3 March 2008
12. ^{{cite journal|title=Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113|doi=10.1143/JPSJ.73.2593|year=2004|last=Morita |first=Kosuke |journal=Journal of the Physical Society of Japan |volume=73 |pages=2593–2596 |last2=Morimoto |first2=Kouji |last3=Kaji |first3=Daiya |last4=Akiyama |first4=Takahiro |last5=Goto |first5=Sin-Ichi |last6=Haba |first6=Hiromitsu |last7=Ideguchi |first7=Eiji |last8=Kanungo |first8=Rituparna |last9=Katori |first9=Kenji |last10=Koura |first10=Hiroyuki |last11=Kudo |first11=Hisaaki |last12=Ohnishi |first12=Tetsuya |last13=Ozawa |first13=Akira |last14=Suda |first14=Toshimi |last15=Sueki |first15=Keisuke |last16=Xu |first16=Hushan |last17=Yamaguchi |first17=Takayuki |last18=Yoneda |first18=Akira |last19=Yoshida |first19=Atsushi |last20=Zhao |first20=Yuliang |displayauthors=8 |issue=10 |bibcode = 2004JPSJ...73.2593M }}
13. ^{{cite journal |last=Barber |first=Robert C. |last2=Karol |first2=Paul J |last3=Nakahara |first3=Hiromichi |last4=Vardaci |first4=Emanuele |last5=Vogt |first5=Erich W. |title=Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)|doi=10.1351/PAC-REP-10-05-01 |journal=Pure and Applied Chemistry |year=2011 |volume=83|issue=7 |page=1485}}
14. ^{{cite journal|journal=Journal of the Physical Society of Japan|volume=81|pages=103201 |date=2012|title=New Results in the Production and Decay of an Isotope, 278113, of the 113th Element|author=K. Morita|doi=10.1143/JPSJ.81.103201|last2=Morimoto|first2=Kouji|last3=Kaji|first3=Daiya|last4=Haba|first4=Hiromitsu|last5=Ozeki|first5=Kazutaka|last6=Kudou|first6=Yuki|last7=Sumita|first7=Takayuki|last8=Wakabayashi|first8=Yasuo|last9=Yoneda|first9=Akira|first10=Kengo |last10=Tanaka|first11=Sayaka |last11=Yamaki|first12=Ryutaro |last12=Sakai|first13=Takahiro |last13=Akiyama|first14=Shin-ichi |last14=Goto|first15=Hiroo |last15=Hasebe|first16=Minghui |last16=Huang|first17=Tianheng |last17=Huang|first18=Eiji |last18=Ideguchi|first19=Yoshitaka |last19=Kasamatsu|first20=Kenji |last20=Katori|first21=Yoshiki |last21=Kariya|first22=Hidetoshi |last22=Kikunaga|first23=Hiroyuki |last23=Koura|first24=Hisaaki |last24=Kudo|first25=Akihiro |last25=Mashiko|first26=Keita |last26=Mayama|first27=Shin-ichi |last27=Mitsuoka|first28=Toru |last28=Moriya|first29=Masashi |last29=Murakami|first30=Hirohumi |last30=Murayama|first31=Saori |last31=Namai|first32=Akira |last32=Ozawa|first33=Nozomi |last33=Sato|first34=Keisuke |last34=Sueki|first35=Mirei |last35=Takeyama|first36=Fuyuki |last36=Tokanai|first37=Takayuki |last37=Yamaguchi|first38=Atsushi |last38=Yoshida|issue=10|display-authors=10|arxiv = 1209.6431 |bibcode = 2012JPSJ...81j3201M }}
15. ^{{cite journal|url=http://nrv.jinr.ru/pdf_file/PhysRevC_76_011601.pdf|title=Synthesis of the isotope 282113 in the 237Np+48Ca fusion reaction |last=Oganessian |first=Yu. Ts. |journal=Physical Review C |volume=76 |issue=1 |page=011601(R) |year=2007 |doi=10.1103/PhysRevC.76.011601 |last2=Utyonkov |first2=V. |last3=Lobanov |first3=Yu. |last4=Abdullin |first4=F. |last5=Polyakov |first5=A. |last6=Sagaidak |first6=R. |last7=Shirokovsky |first7=I. |last8=Tsyganov |first8=Yu. |last9=Voinov |first9=A. |last10=Gulbekian |first10=Gulbekian |last11=Bogomolov |first11=Bogomolov |last12=Gikal |first12=Gikal |last13=Mezentsev |first13=Mezentsev |last14=Subbotin |first14=Subbotin |last15=Sukhov |first15=Sukhov |last16=Subotic |first16=Subotic |last17=Zagrebaev |first17=Zagrebaev |last18=Vostokin |first18=Vostokin |last19=Itkis |first19=Itkis |last20=Henderson |first20=Henderson |last21=Kenneally |first21=Kenneally |last22=Landrum |first22=Landrum |last23=Moody |first23=Moody |last24=Shaughnessy |first24=Shaughnessy |last25=Stoyer |first25=Stoyer |last26=Stoyer |first26=Stoyer |last27=Wilk |first27=Wilk|bibcode=2007PhRvC..76a1601O |display-authors=10}}
16. ^{{cite journal|last1= Oganessian|first1= Yu. Ts.|last2= Abdullin|first2= F. Sh.|last3= Bailey|first3= P. D.|last4= Benker|first4= D. E.|last5= Bennett|first5= M. E.|last6= Dmitriev|first6= S. N.|last7= Ezold|first7= J. G.|last8= Hamilton|first8= J. H.|last9= Henderson|first9= R. A.|displayauthors=8|title= Synthesis of a New Element with Atomic Number Z=117|journal= Physical Review Letters|volume= 104|year= 2010|doi= 10.1103/PhysRevLett.104.142502|pmid=20481935|bibcode=2010PhRvL.104n2502O|issue=14|pages=142502}}
17. ^{{cite book|doi=10.1063/1.2746600|chapter=Heaviest Nuclei Produced in 48Ca-induced Reactions (Synthesis and Decay Properties)|title=AIP Conference Proceedings|year=2007|last1=Oganessian|first1=Yu. Ts.|last2=Penionzhkevich|first2=Yu. E.|last3=Cherepanov|first3=E. A.|volume=912|pages=235–246}}
18. ^{{cite web|url=http://www.nndc.bnl.gov/chart/reCenter.jsp?z=113&n=173|title=Interactive Chart of Nuclides|publisher=Brookhaven National Laboratory |last=Sonzogni |first=Alejandro |location=National Nuclear Data Center |accessdate=2008-06-06}}
19. ^{{cite journal|arxiv=0707.2588|doi=10.1103/PhysRevC.76.044606|title=Formation of superheavy nuclei in cold fusion reactions|year=2007 |last=Feng |first=Zhao-Qing |journal=Physical Review C |volume=76 |page=044606 |last2=Jin |first2=Gen-Ming |last3=Li |first3=Jun-Qing |last4=Scheid |first4=Werner |issue=4 |bibcode=2007PhRvC..76d4606F}}
20. ^{{cite journal|last=Feng|first=Z.|last2=Jin|first2=G.|last3=Li|first3=J.|title=Production of new superheavy Z=108-114 nuclei with 238U, 244Pu and 248,250Cm targets|date=2009|arxiv=0912.4069|journal=Physical Review C|volume=80|issue=5|pages=057601|doi=10.1103/PhysRevC.80.057601}}
21. ^{{cite journal|arxiv=0803.1117|doi=10.1016/j.nuclphysa.2008.11.003|title=Production of heavy and superheavy nuclei in massive fusion reactions|year=2009 |last=Feng |first=Z |journal=Nuclear Physics A |volume=816 |issue=1–4|pages=33–51 |last2=Jin |first2=G |last3=Li |first3=J |last4=Scheid |first4=W |bibcode=2009NuPhA.816...33F}}

Notes

  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.

Isotopes and nuclear properties

Nucleosynthesis

Super-heavy elements such as nihonium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas most of the isotopes of nihonium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higher atomic numbers.[8]

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons.[9] In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products.[8] The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).[10]

Cold fusion

Before the successful synthesis of nihonium by the RIKEN team, scientists at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt, Germany also tried to synthesize nihonium by bombarding bismuth-209 with zinc-70 in 1998. No nihonium atoms were identified in two separate runs of the reaction.[11] They repeated the experiment in 2003 again without success.[11] In late 2003, the emerging team at RIKEN using their efficient apparatus GARIS attempted the reaction and reached a limit of 140 fb. In December 2003 – August 2004, they resorted to "brute force" and carried out the reaction for a period of eight months. They were able to detect a single atom of 278Nh.[12] They repeated the reaction in several runs in 2005 and were able to synthesize a second atom,[13] followed by a third in 2012.[14]

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=113.

Target Projectile CN Attempt result
208Pb71Ga279NhReaction yet to be attempted}}
209Bi70Zn279NhSuccessful reaction}}
238U45Sc283NhReaction yet to be attempted}}
237Np48Ca285NhSuccessful reaction}}
244Pu41K285NhReaction yet to be attempted}}
250Cm37Cl287NhReaction yet to be attempted}}
248Cm37Cl285NhReaction yet to be attempted}}

Hot fusion

In June 2006, the Dubna-Livermore team synthesised nihonium directly by bombarding a neptunium-237 target with accelerated calcium-48 nuclei, in a search for the lighter isotopes 281Nh and 282Nh and their decay products, to provide insight into the stabilizing effects of the closed neutron shells at N = 162 and N = 184:[17]

{{nuclide|link=yes|Neptunium|237}} + {{nuclide|link=yes|Calcium|48}} → {{nuclide|link=yes|nihonium|282}} + {{SubatomicParticle|link=no|10neutron}}

Two atoms of 282Nh were detected.[15]

As decay product

List of nihonium isotopes observed by decay
Evaporation residue Observed nihonium isotope
294Lv, 290Fl ?290Nh ?
299Ubn, 295Og, 291Lv, 287Fl ?287Nh ?
294Ts, 290Mc286Nh[16]
293Ts, 289Mc285Nh[16]
288Mc284Nh[17]
287Mc283Nh[17]

Nihonium has been observed as a decay product of flerovium (via electron capture) and moscovium (via alpha decay). Moscovium currently has four known isotopes; all of them undergo alpha decays to become nihonium nuclei, with mass numbers between 283 and 286. Parent flerovium and moscovium nuclei can be themselves decay products of livermorium (although unconfirmed decays from oganesson or unbinilium may have been observed) and tennessine respectively. To date, no other elements have been known to decay to nihonium.[18] For example, in January 2010, the Dubna team (JINR) identified nihonium-286 as a product in the decay of tennessine via an alpha decay sequence:[16]

{{nuclide|link=yes|tennessine|294}} → {{nuclide|link=yes|moscovium|290}} + {{nuclide|link=yes|helium|4}}

{{nuclide|moscovium|290}} → {{nuclide|link=yes|nihonium|286}} + {{nuclide|helium|4}}

Theoretical calculations

Evaporation residue cross sections

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; σ = cross section

this article's talk page.
  • {{NUBASE 2003}}
  • {{NNDC}}
  • {{CRC85|chapter=11}}
{{Navbox element isotopes}}

3 : Nihonium|Isotopes of nihonium|Lists of isotopes by element

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 1:10:34