请输入您要查询的百科知识:

 

词条 Isotopes of palladium
释义

  1. Palladium-103

  2. Palladium-107

  3. List of isotopes

      Notes  

  4. References

{{infobox palladium isotopes}}

Naturally occurring palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 123.937 u (124Pd). Most of these have half-lives that are less than a half an hour except 101Pd (half-life: 8.47 hours), 109Pd (half-life: 13.7 hours), and 112Pd (half-life: 21 hours).

The primary decay mode before the most abundant stable isotope, 106Pd, is electron capture and the primary mode after is beta decay. The primary decay product before 106Pd is rhodium and the primary product after is silver.

Radiogenic 107Ag is a decay product of 107Pd and was first discovered in the Santa Clara meteorite of 1978.[1] The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the solar system, must reflect the presence of short-lived nuclides in the early solar system.[2]

Palladium-103

Palladium-103 is a radioisotope of the element palladium that has uses in radiation therapy for prostate cancer and uveal melanoma. Palladium-103 may be created from palladium-102 or from rhodium-103 using a cyclotron. Palladium-103 has a half-life of 16.99[3] days and decays by electron capture to rhodium-103, emitting characteristic x-rays with 21 keV of energy.

Palladium-107

{{Long-lived fission products}}

Palladium-107 is the second longest lived (halflife of 6.5 million years[3]) and least radioactive (decay energy only 33 keV, specific activity 5{{e|-5}} Ci/g) of the 7 long-lived fission products. It undergoes pure beta decay (no gamma radiation) to 107Ag.

Its yield from thermal neutron fission of uranium-235 is 0.1629% per fission, only 1/4 that of iodine-129, and only 1/40 those of 99Tc, 93Zr, and 135Cs. Yield from 233U is slightly lower, but yield from 239Pu is much higher, 3.3%. Yields are higher in fast fission or in fission of heavier nuclei.

According to [4] fission palladium contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U.)

Because of this dilution and because 105Pd has 11 times the neutron absorption cross section, 107Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal, palladium is not as mobile in the environment as iodine or technetium.

List of isotopes

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-lifedecay
mode(s)[5][6]
daughter
isotope(s)[7]
nuclear
spin and
parity
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
91Pd4645 90.94911(61)# 10# ms [>1.5 µs] β+ 91Rh 7/2+#
92Pd4646 91.94042(54)# 1.1(3) s [0.7(+4−2) s] β+ 92Rh 0+
93Pd4647 92.93591(43)# 1.07(12) s β+ 93Rh (9/2+)
93mPd0+X keV 9.3(+25−17) s
94Pd4648 93.92877(43)# 9.0(5) s β+ 94Rh 0+
94mPd4884.4(5) keV 530(10) ns (14+)
95Pd4649 94.92469(43)# 10# s β+ 95Rh 9/2+#
95mPd1860(500)# keV13.3(3) s β+ (94.1%) 95Rh(21/2+)
IT (5%) 95Pd
β+, p (.9%) 94Ru
96Pd4650 95.91816(16) 122(2) s β+ 96Rh 0+
96mPd2530.8(1) keV 1.81(1) µs 8+
97Pd4651 96.91648(32) 3.10(9) min β+ 97Rh 5/2+#
98Pd4652 97.912721(23) 17.7(3) min β+ 98Rh 0+
99Pd4653 98.911768(16) 21.4(2) min β+ 99Rh (5/2)+
100Pd4654 99.908506(12) 3.63(9) d EC 100Rh 0+
101Pd4655 100.908289(19) 8.47(6) h β+ 101Rh 5/2+
102Pd4656 101.905609(3)Observationally Stable[8] 0+ 0.0102(1)
103Pd[9]4657 102.906087(3) 16.991(19) d EC 103Rh 5/2+
103mPd784.79(10) keV 25(2) ns 11/2−
104Pd4658 103.904036(4)Stable 0+ 0.1114(8)
105Pd[10]4659 104.905085(4)Stable 5/2+ 0.2233(8)
106Pd[10]4660 105.903486(4)Stable 0+ 0.2733(3)
107Pd[11]4661 106.905133(4) 6.5(3)×106 y β 107Ag 5/2+
107m1Pd115.74(12) keV 0.85(10) µs 1/2+
107m2Pd214.6(3) keV 21.3(5) s IT 107Pd 11/2−
108Pd[10]4662 107.903892(4)Stable 0+ 0.2646(9)
109Pd[10]4663 108.905950(4) 13.7012(24) h β 109mAg 5/2+
109m1Pd113.400(10) keV 380(50) ns 1/2+
109m2Pd188.990(10) keV 4.696(3) min IT 109Pd 11/2−
110Pd[10]4664 109.905153(12)Observationally Stable[12] 0+ 0.1172(9)
111Pd4665 110.907671(12) 23.4(2) min β 111mAg 5/2+
111mPd172.18(8) keV5.5(1) h IT 111Pd11/2−
β 111mAg
112Pd4666 111.907314(19) 21.03(5) h β 112Ag 0+
113Pd4667 112.91015(4) 93(5) s β 113mAg (5/2+)
113mPd81.1(3) keV 0.3(1) s IT 113Pd (9/2−)
114Pd4668 113.910363(25) 2.42(6) min β 114Ag 0+
115Pd4669 114.91368(7) 25(2) s β 115mAg (5/2+)#
115mPd89.18(25) keV50(3) s β (92%) 115Ag(11/2−)#
IT (8%) 115Pd
116Pd4670 115.91416(6) 11.8(4) s β 116Ag 0+
117Pd4671 116.91784(6) 4.3(3) s β 117mAg (5/2+)
117mPd203.2(3) keV 19.1(7) ms IT 117Pd (11/2−)#
118Pd4672 117.91898(23) 1.9(1) s β 118Ag 0+
119Pd4673 118.92311(32)# 0.92(13) s β 119Ag
120Pd4674 119.92469(13) 0.5(1) s β 120Ag 0+
121Pd4675 120.92887(54)# 285 ms β 121Ag
122Pd4676 121.93055(43)# 175 ms [>300 ns] β 122Ag 0+
123Pd4677 122.93493(64)# 108 ms β 123Ag
124Pd4678 123.93688(54)# 38 ms β 124Ag 0+
125Pd[13]4679 57 ms β 125Ag
126Pd[14][15]4680 48.6 ms β 126Ag 0+
126m1Pd2023 keV 330 ns IT 126Pd 5−
126m2Pd2110 keV 440 ns IT 126m1Pd 7−
127Pd4681 38 ms β 127Ag
128Pd[14][15]4682 35 ms β 128Ag 0+
128mPd2151 keV 5.8 µs IT 128Pd 8+
129Pd4683 31 ms β 129Ag
1. ^{{cite journal | author= W. R. Kelly |author2=G. J. Wasserburg | year = 1978 | title = Evidence for the existence of 107Pd in the early solar system | journal = Geophysical Research Letters | volume = 5 | issue = 12| pages = 1079–1082 | doi =10.1029/GL005i012p01079 | bibcode=1978GeoRL...5.1079K}}
2. ^{{cite journal | author= J. H. Chen |author2=G. J. Wasserburg | year = 1990 | title = The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets | journal = Geochimica et Cosmochimica Acta | volume = 54| issue = 6 | pages = 1729–1743 | doi = 10.1016/0016-7037(90)90404-9|bibcode = 1990GeCoA..54.1729C }}
3. ^{{cite web |last = Winter |first = Mark |title = Isotopes of palladium |work = WebElements |publisher = The University of Sheffield and WebElements Ltd, UK |url = http://www.webelements.com/palladium/isotopes.html| accessdate = 4 March 2013}}
4. ^{{cite journal |author=R. P. Bush |title=Recovery of Platinum Group Metals from High Level Radioactive Waste |journal=Platinum Metals Review |year=1991 |volume=35 |issue=4 |pages=202–208 |url=http://www.platinummetalsreview.com/pdf/pmr-v35-i4-202-208.pdf}}
5. ^{{cite web |url=http://www.nucleonica.net/unc.aspx |title=Universal Nuclide Chart |publisher=nucleonica |registration=yes}}
6. ^Abbreviations:
EC: Electron capture
IT: Isomeric transition
7. ^Bold for stable isotopes
8. ^Believed to decay by β+β+ to 102Ru
9. ^Used in medicine
10. ^Fission product
11. ^Long-lived fission product
12. ^Believed to decay by ββ to 110Cd with a half-life over 6×1017 years
13. ^Future Plan of the Experimental Program on Synthesizing the Heaviest Element at RIKEN, Kosuke Morita {{webarchive |url=https://web.archive.org/web/20120917003601/http://www-win.gsi.de/tasca07/contributions/TASCA07_Contribution_Morita.pdf |date=September 17, 2012 }}
14. ^{{cite journal |author=H. Watanabe |display-authors=et al. |title=Isomers in 128Pd and 126Pd: Evidence for a Robust Shell Closure at the Neutron Magic Number 82 in Exotic Palladium Isotopes |journal=Physical Review Letters |date=2013-10-08 |volume=111 |issue=15 |page=152501 |doi=10.1103/PhysRevLett.111.152501|bibcode=2013PhRvL.111o2501W |hdl=2437/215438 }}
15. ^{{cite web |url=http://phys.org/news/2013-11-neutron-rich-atomic-nuclei-scientists-nuclear.html |title=Experiments on neutron-rich atomic nuclei could help scientists to understand nuclear reactions in exploding stars |publisher=phys.org |date=2013-11-29}}

Notes

  • The precision of the isotope abundances and atomic mass is limited through variations. The given ranges should be applicable to any normal terrestrial material.
  • Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.

References

  • Patent application for Palladium-103 implantable radiation-delivery device (accessed 12/7/05)
  • Isotope masses from:
    • {{NUBASE 2003}}
  • Isotopic compositions and standard atomic masses from:
    • {{CAWIA 2003}}
    • {{CIAAW 2005}}
  • Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
    • {{NUBASE 2003}}
    • {{NNDC}}
    • {{CRC85|chapter=11}}
{{Navbox element isotopes}}

3 : Palladium|Isotopes of palladium|Lists of isotopes by element

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/21 1:27:13