词条 | Gauss–Jacobi quadrature |
释义 |
In numerical analysis, Gauss–Jacobi quadrature (named after Carl Friedrich Gauss and Carl Gustav Jacob Jacobi) is a method of numerical quadrature based on Gaussian quadrature. Gauss–Jacobi quadrature can be used to approximate integrals of the form where ƒ is a smooth function on [−1, 1] and α, β > −1. The interval [−1, 1] can be replaced by any other interval by a linear transformation. Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with α = β = 0. Similarly, the Chebyshev–Gauss quadrature of the first (second) kind arises when one takes α = β = -0.5 (+0.5). More generally, the special case α = β turns Jacobi polynomials into Gegenbauer polynomials, in which case the technique is sometimes called Gauss–Gegenbauer quadrature. Gauss–Jacobi quadrature uses ω(x) = (1 − x)α (1 + x)β as the weight function. The corresponding sequence of orthogonal polynomials consist of Jacobi polynomials. Thus, the Gauss–Jacobi quadrature rule on n points has the form where x1, …, xn are the roots of the Jacobi polynomial of degree n. The weights λ1, …, λn are given by the formula where Γ denotes the Gamma function and {{math|P{{su|b=n|p=(α, β)}}(x)}} the Jacobi polynomial of degree n. References
External links
1 : Numerical integration (quadrature) |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。