词条 | Genus field |
释义 |
In algebraic number theory, the genus field G of an algebraic number field K is the maximal abelian extension of K which is obtained by composing an absolutely abelian field with K and which is unramified at all finite primes of K. The genus number of K is the degree [G:K] and the genus group is the Galois group of G over K. If K is itself absolutely abelian, the genus field may be described as the maximal absolutely abelian extension of K unramified at all finite primes: this definition was used by Leopoldt and Hasse. If K=Q({{radic|m}}) (m squarefree) is a quadratic field of discriminant D, the genus field of K is a composite of quadratic fields. Let pi run over the prime factors of D. For each such prime p, define p∗ as follows: Then the genus field is the composite See also
References
1 : Class field theory |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。