请输入您要查询的百科知识:

 

词条 Glutathione-ascorbate cycle
释义

  1. See also

  2. References

Asada -Halliwell pathway

The glutathione-ascorbate cycle is a metabolic pathway that detoxifies hydrogen peroxide (H2O2), which is a reactive oxygen species that is produced as a waste product in metabolism. The cycle involves the antioxidant metabolites: ascorbate, glutathione and NADPH and the enzymes linking these metabolites.[1]

In the first step of this pathway, H2O2 is reduced to water by ascorbate peroxidase (APX) using ascorbate as the electron donor. The oxidized ascorbate (monodehydroascorbate) is regenerated by monodehydroascorbate reductase (MDAR).[2] However, monodehydroascorbate is a radical and if not rapidly reduced it disproportionates into ascorbate and dehydroascorbate. Dehydroascorbate is reduced to ascorbate by dehydroascorbate reductase at the expense of GSH, yielding oxidized glutathione (GSSG). Finally GSSG is reduced by glutathione reductase (GR) using NADPH as the electron donor. Thus ascorbate and glutathione are not consumed; the net electron flow is from NADPH to H2O2. The reduction of dehydroascorbate may be non-enzymatic or catalysed by proteins with dehydroascorbate reductase (DHAR) activity, such as glutathione S-transferase omega 1 or glutaredoxins.[3][4]

In plants, the glutathione-ascorbate cycle operates in the cytosol, mitochondria, plastids and peroxisomes.[5][6] Since glutathione, ascorbate and NADPH are present in high concentrations in plant cells it is assumed that the glutathione-ascorbate cycle plays a key role for H2O2 detoxification. Nevertheless, other enzymes (peroxidases) including peroxiredoxins and glutathione peroxidases, which use thioredoxins or glutaredoxins as reducing substrates, also contribute to H2O2 removal in plants.[7]

See also

  • Antioxidant
  • Oxidative stress
  • Peroxidases

References

1. ^{{cite journal |vauthors=Noctor G, Foyer CH |title= ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control |journal=Annu Rev Plant Physiol Plant Mol Biol|volume=49 |pages=249–279 |date=Jun 1998 |pmid=15012235 |doi=10.1146/annurev.arplant.49.1.249}}
2. ^{{cite journal |vauthors=Wells WW, Xu DP |title=Dehydroascorbate reduction |journal=J. Bioenerg. Biomembr. |volume=26 |issue=4 |pages=369–77 |date=August 1994 |pmid=7844111 |doi=10.1007/BF00762777}}
3. ^{{cite journal |vauthors=Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG |title=Characterization of the omega class of glutathione transferases |journal=Meth. Enzymol. |volume=401 |issue= |pages=78–99 |year=2005 |pmid=16399380 |doi=10.1016/S0076-6879(05)01005-0 }}
4. ^{{cite journal |vauthors=Rouhier N, Gelhaye E, Jacquot JP |title=Exploring the active site of plant glutaredoxin by site-directed mutagenesis |journal=FEBS Lett|volume=511 |issue=1–3 |pages=145–9 |year=2002 |pmid=11821065 | doi= 10.1016/S0014-5793(01)03302-6 }}
5. ^{{cite journal |author=Meyer A |title= The integration of glutathione homeostasis and redox signaling |journal= J Plant Physiol|volume=165 |pages=1390–403 |date=Sep 2009 |pmid=18171593 |doi=10.1016/j.jplph.2007.10.015 |issue=13 }}
6. ^{{cite journal |vauthors=Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F |title= Role of the Ascorbate-Glutathione Cycle of Mitochondria and Peroxisomes in the Senescence of Pea Leaves |journal= Plant Physiol |volume=118|issue=4 |pages=1327–35 |date=Dec 1998 |pmid=9847106 |doi=10.1104/pp.118.4.1327 |pmc=34748}}
7. ^{{cite journal |vauthors=Rouhier N, Lemaire SD, Jacquot JP |title= The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation |journal= Annu Rev Plant Biol |volume=59|issue= |pages=143–66 |year=2008 |pmid=18444899|doi=10.1146/annurev.arplant.59.032607.092811}}
{{DEFAULTSORT:Glutathione-Ascorbate Cycle}}{{portal bar|Metabolism}}

3 : Metabolism|Free radicals|Antioxidants

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 12:56:57