请输入您要查询的百科知识:

 

词条 Hosoya's triangle
释义

  1. Name

  2. Recurrence

  3. Relation to Fibonacci numbers

  4. References

The Hosoya triangle or Hosoya's triangle (originally Fibonacci triangle) is a triangular arrangement of numbers (like Pascal's triangle) based on the Fibonacci numbers. Each number is the sum of the two numbers above in either the left diagonal or the right diagonal. The first few rows are:

                                                 1                                              1     1                                           2     1     2                                        3     2     2     3                                     5     3     4     3     5                                  8     5     6     6     5     8                              13     8    10     9    10     8    13                           21    13    16    15    15    16    13    21                        34    21    26    24    25    24    26    21    34                     55    34    42    39    40    40    39    42    34    55                  89    55    68    63    65    64    65    63    68    55    89              144    89   110   102   105   104   104   105   102   110    89   144                                               etc.

(See {{OEIS|id=A058071}}).

Name

The name "Fibonacci triangle" has also been used for triangles composed of Fibonacci numbers or related numbers—Wilson (1998), or triangles with Fibonacci sides and integral area—Yuan (1999), hence is ambiguous.

Recurrence

The numbers in this triangle obey the recurrence relations

H(0, 0) = H(1, 0) = H(1, 1) = H(2, 1) = 1

and

H(nj) = H(n − 1, j) + H(n − 2, j)

H(n − 1, j − 1) + H(n − 2, j − 2).

Relation to Fibonacci numbers

The entries in the triangle satisfy the identity

H(ni) = F(i + 1) × F(n − i + 1).

Thus, the two outermost diagonals are the Fibonacci numbers, while the numbers on the middle vertical line are the squares of the Fibonacci numbers. All the other numbers in the triangle are the product of two distinct Fibonacci numbers greater than 1. The row sums are the first convolved Fibonacci numbers.

References

  • Haruo Hosoya (1976), "Fibonacci Triangle", The Fibonacci Quarterly, vol. 14, no. 2, pp. 173–178.
  • Thomas Koshy (2001), Fibonacci and Lucas Numbers and Applications, pp. 187–195. New York: Wiley.
  • Brad Wilson (1998), "The Fibonacci triangle modulo p". The Fibonacci Quarterly, vol. 36, no. 3, pp. 194–203.
  • Ming Hao Yuan (1999), "A result on a conjecture concerning the Fibonacci triangle when k=4." (In Chinese.) Journal of Huanggang Normal University, vol. 19, no. 4, pp. 19–23.

2 : Triangles of numbers|Fibonacci numbers

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 19:31:15