词条 | H-stable potential |
释义 |
In statistical mechanics of continuous systems, a potential for a many-body system is called H-stable (or simply stable) if the potential energy per particle is bounded below by a constant that is independent of the total number of particles. In many circumstances, if a potential is not H-stable, it is not possible to define a grand canonical partition function in finite volume, because of catastrophic configurations with infinite particles located in a finite space. Classical statistical mechanicsDefinitionConsider a system of particles in positions ; the interaction or potential between a particle in position and a particle in position is where is a real, even (possibly unbounded) function. Then is H-stable if there exists such that, for any and any , Applications
then the potential is stable (with the constant given by ). This condition applies for example to potentials that are: a) positive functions; b) positive-definite functions.
is convergent. In fact, for bounded, upper-semi-continuous potentials the hypothesis is not only sufficient, but also necessary!
hence the H-stability is a sufficient condition for the partition function to exists in finite volume.
and, if the charges of all the particles are equal, then the potential energy is and the system is H-stable with ; but the thermodynamic limit doesn't exist, because the potential is not tempered.
if the particles can have charges with different signs, the potential energy is where is the charge of the particle . in not bounded from below: for example, when and , the two body potential has infimum Yet, Frohlich[1] proved the existence of the thermodynamics limit for . Quantum statistical mechanicsThe notion of H-stability in quantum mechanics is more subtle. While in the classical case the kinetic part of the Hamiltonian is not important as it can be zero independently of the position of the particles, in the quantum case the kinetic term plays an important role in the lower bound for the total energy because of the uncertainty principle. (In fact, stability of matter was the historical reason for introducing such a principle in mechanics.) The definition of stability is : where E0 is the ground state energy. Classical H-stability implies quantum H-stability, but the converse is false. The criterion is especially useful in statistical mechanics, where H-stability is necessary to the existence of thermodynamics, i.e. if a system is not H-stable, the thermodynamic limit does not exist. References1. ^{{cite journal|last=Frohlich|first=J.|title=Classical and quantum statistical mechanics in one and two dimensions: Two-component Yukawa and Coulomb systems|journal=Comm. Math. Phys.|year=1976|volume=47|doi=10.1007/bf01609843|bibcode=1976CMaPh..47..233F}}
1 : Statistical mechanics |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。