请输入您要查询的百科知识:

 

词条 Kervaire manifold
释义

  1. See also

  2. References

In mathematics, specifically in differential topology, a Kervaire manifold K4n+2 is a piecewise-linear manifold of dimension 4n+2 constructed by {{harvtxt|Kervaire|1960}} by plumbing together the tangent bundles of two 2n+1-spheres, and then gluing a ball to the result. In 10 dimensions this gives a piecewise-linear manifold with no smooth structure.

See also

  • Exotic sphere

References

  • {{citation|first=M. |last=Kervaire |authorlink=Michel Kervaire |title=A manifold which does not admit any differentiable structure |journal=Comm. Math. Helv. |volume=34 |year=1960 |pages=257–270 |url=http://retro.seals.ch/digbib/view?did=c1:391766&sdid=c1:392119 |doi=10.1007/BF02565940 |mr=0139172 }}{{dead link|date=May 2017 |bot=InternetArchiveBot |fix-attempted=yes }}
  • {{eom|id=k/k055350|first=M.A. |last=Shtan'ko |title=Kervaire invariant}}
  • {{eom|id=d/d031010|first=M.A. |last=Shtan'ko |title=Dendritic manifold}}
{{differential-geometry-stub}}

2 : Differential topology|Manifolds

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 16:40:36