请输入您要查询的百科知识:

 

词条 Killing spinor
释义

  1. References

  2. Books

  3. External links

Killing spinor is a term used in mathematics and physics. By the more narrow definition, commonly used in mathematics, the term Killing spinor indicates those twistor

spinors which are also eigenspinors of the Dirac operator.[1][2][3] The term is named after Wilhelm Killing.

Another equivalent definition is that Killing spinors are the solutions to the Killing equation for a so-called Killing number.

More formally:[4]

A Killing spinor on a Riemannian spin manifold M is a spinor field which satisfies

for all tangent vectors X, where is the spinor covariant derivative, is Clifford multiplication and is a constant, called the Killing number of . If then the spinor is called a parallel spinor.

In physics, Killing spinors are used in supergravity and superstring theory, in particular for finding solutions which preserve some supersymmetry. They are a special kind of spinor field related to Killing vector fields and Killing tensors.

References

1. ^{{cite journal|title=Der erste Eigenwert des Dirac Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung|author=Th. Friedrich|journal=Mathematische Nachrichten|volume=97|year=1980|pages=117–146|doi=10.1002/mana.19800970111}}
2. ^{{cite journal|title=On the conformal relation between twistors and Killing spinors|author=Th. Friedrich|journal=Supplemento dei Rendiconti del Circolo Matematico di Palermo, serie II|volume=22|year=1989|pages=59–75}}
3. ^{{cite journal|title=Spin manifolds, Killing spinors and the universality of Hijazi inequality|author=A. Lichnerowicz|journal=Lett. Math. Phys.|volume=13|year=1987|pages=331–334|doi=10.1007/bf00401162|bibcode = 1987LMaPh..13..331L }}
4. ^{{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=American Mathematical Society |pages= 116–117| year=2000|isbn=978-0-8218-2055-1}}

Books

  • {{Cite book | last1=Lawson | first1=H. Blaine | last2=Michelsohn | first2=Marie-Louise |author2-link=Marie-Louise Michelsohn| title=Spin Geometry | publisher=Princeton University Press | isbn=978-0-691-08542-5 | year=1989 | postscript=}}
  • {{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=American Mathematical Society | year=2000|isbn=978-0-8218-2055-1}}

External links

  • "Twistor and Killing spinors in Lorentzian geometry," by Helga Baum (PDF format)
  • Dirac Operator From MathWorld
  • Killing's Equation From MathWorld
  • [https://web.archive.org/web/20041107222740/http://www.math.tu-berlin.de/~bohle/pub/dipl.ps Killing and Twistor Spinors on Lorentzian Manifolds, (paper by Christoph Bohle) (postscript format) ]
{{math-stub}}

4 : Riemannian geometry|Structures on manifolds|Supersymmetry|Spinors

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 18:26:22