词条 | Killing spinor |
释义 |
spinors which are also eigenspinors of the Dirac operator.[1][2][3] The term is named after Wilhelm Killing. Another equivalent definition is that Killing spinors are the solutions to the Killing equation for a so-called Killing number. More formally:[4] A Killing spinor on a Riemannian spin manifold M is a spinor field which satisfies for all tangent vectors X, where is the spinor covariant derivative, is Clifford multiplication and is a constant, called the Killing number of . If then the spinor is called a parallel spinor. In physics, Killing spinors are used in supergravity and superstring theory, in particular for finding solutions which preserve some supersymmetry. They are a special kind of spinor field related to Killing vector fields and Killing tensors. References1. ^{{cite journal|title=Der erste Eigenwert des Dirac Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung|author=Th. Friedrich|journal=Mathematische Nachrichten|volume=97|year=1980|pages=117–146|doi=10.1002/mana.19800970111}} 2. ^{{cite journal|title=On the conformal relation between twistors and Killing spinors|author=Th. Friedrich|journal=Supplemento dei Rendiconti del Circolo Matematico di Palermo, serie II|volume=22|year=1989|pages=59–75}} 3. ^{{cite journal|title=Spin manifolds, Killing spinors and the universality of Hijazi inequality|author=A. Lichnerowicz|journal=Lett. Math. Phys.|volume=13|year=1987|pages=331–334|doi=10.1007/bf00401162|bibcode = 1987LMaPh..13..331L }} 4. ^{{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=American Mathematical Society |pages= 116–117| year=2000|isbn=978-0-8218-2055-1}} Books
External links
4 : Riemannian geometry|Structures on manifolds|Supersymmetry|Spinors |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。