请输入您要查询的百科知识:

 

词条 Light dark matter
释义

  1. Motivation

  2. See also

  3. References

  4. Further reading

{{short description|Dark matter weakly interacting massive particles candidates with masses less than 1 GeV}}{{see also|Lambda-CDM model|Galaxy formation}}{{Physical cosmology|cTopic=Components}}{{expert needed|Astronomy|ex2=Physics|date=February 2009}}

In astronomy and cosmology, light dark matter are dark matter weakly interacting massive particles (WIMPS) candidates with masses less than 1 GeV.[1] These particles are heavier than warm dark matter and hot dark matter, but are lighter than the traditional forms{{which|date=August 2016}} of cold dark matter. The Lee-Weinberg bound [2] limits the mass of the favored dark matter candidate, WIMPs, that interact via the weak interaction to GeV. This bound arises as follows. The lower the mass of WIMPs is, the lower the annihilation cross section, which is of the order , where m is the WIMP mass and M the mass of the Z-boson. This means that low mass WIMPs, which would be abundantly produced in the early universe, freeze out (i.e. stop interacting) much earlier and thus at a higher temperature, than higher mass WIMPs. This leads to a higher relic WIMP density. If the mass is lower than GeV the WIMP relic density would overclose the universe.

Some of the few loopholes allowing one to avoid the Lee-Weinberg bound without introducing new forces below the electroweak scale have been ruled out by accelerator experiments (i.e. CERN, Tevatron), and in decays of B mesons.[3]

A viable way of building light dark matter models is thus by postulating new light bosons. This increases the annihilation cross section and reduces the coupling of dark matter particles to the Standard Model making them consistent with accelerator experiments.[4][5][6]

Motivation

In recent years, light dark matter has become popular due in part to the many benefits of the theory. Sub-GeV dark matter has been used to explain the positron excess in the galactic center observed by INTEGRAL, excess gamma rays from the galactic center [7] and extragalactic sources. It has also been suggested that light dark matter may explain a small discrepancy in the measured value of the fine structure constant in different experiments.[8]

See also

  • Axion
  • Axion Dark Matter Experiment
  • Dark matter halo
  • Minimal Supersymmetric Standard Model
  • Neutralino
  • Scalar field dark matter
  • Weakly interacting massive particles

References

1. ^{{cite conference |first=M. |last=Cassé |author2=Fayet, P. |title=Light Dark Matter |conference=21st IAP Colloquium "Mass Profiles and Shapes of Cosmological Structures" |location=Paris |date=4–9 July 2005 |arxiv=astro-ph/0510490 |bibcode=2006EAS....20..201C|doi=10.1051/eas:2006072}}
2. ^{{cite journal |author=Lee B.W.; Weinberg S. |date=1977 |title=Cosmological Lower Bound on Heavy-Neutrino Masses |journal=Physical Review Letters |volume=39 |pages=165–168 |doi=10.1103/PhysRevLett.39.165|bibcode=1977PhRvL..39..165L |issue=4}}
3. ^{{cite journal |last=Bird |first=C. |last2=Kowalewski |first2=R. |last3=Pospelov |first3=M. |date=2006 |title=Dark matter pair-production in b → s transitions |journal=Mod. Phys. Lett. A |volume=21 |issue=6 |pages=457–478 |doi=10.1142/S0217732306019852|arxiv = hep-ph/0601090 |bibcode = 2006MPLA...21..457B }}
4. ^{{cite journal |first=C. |last=Boehm |first2=P. |last2=Fayet |date=2004 |title=Scalar Dark Matter candidates |journal=Nuclear Physics B |pages=219–263 |doi=10.1016/j.nuclphysb.2004.01.015 |volume=683 |issue=1–2 |arxiv=hep-ph/0305261|bibcode = 2004NuPhB.683..219B }}
5. ^{{cite journal |first=C. |last=Boehm |first2=P. |last2=Fayet |last3=Silk |first3=J. |date=2004 |title=Light and Heavy Dark Matter Particles |journal=Physical Review D |volume=69 |pages=101302 |doi=10.1103/PhysRevD.69.101302 |arxiv=hep-ph/0311143|bibcode = 2004PhRvD..69j1302B |issue=10 }}
6. ^{{cite journal |last=Boehm |first=C. |date=2004 |title=Implications of a new light gauge boson for neutrino physics |journal=Physical Review D |volume=70 |pages=055007 |doi=10.1103/PhysRevD.70.055007|arxiv=hep-ph/0405240|bibcode = 2004PhRvD..70e5007B |issue=5 }}
7. ^{{cite journal |last=Beacom |first=J.F. |last2=Bell |first2=N.F. |last3=Bertone |first3=G. |date=2005 |title=Gamma-Ray Constraint on Galactic Positron Production by MeV Dark Matter |journal=Physical Review Letters |volume=94 |pages=171301 |doi=10.1103/PhysRevLett.94.171301 |pmid=15904276 |bibcode=2005PhRvL..94q1301B|arxiv = astro-ph/0409403 |issue=17 }}
8. ^{{cite journal |last=Boehm |first=C. |last2=Ascasibar |first2=Y. |date=2004 |title=More evidence in favour of Light Dark Matter particles? |journal=Physical Review D |volume=70 |pages=115013 |doi=10.1103/PhysRevD.70.115013 |arxiv=hep-ph/0408213|bibcode = 2004PhRvD..70k5013B |issue=11 }}

Further reading

  • {{Cite book

| last = Bertone
| first = Gianfranco
| authorlink =
| title = Particle Dark Matter: Observations, Models and Searches
| publisher = Cambridge University Press
| date = 2010
| location =
| pages = 762
| url =
| doi =
| isbn = 978-0-521-76368-4| title-link = Particle Dark Matter
| bibcode = 2010pdmo.book.....B{{Dark matter}}{{DEFAULTSORT:Light Dark Matter}}

4 : Physical cosmology|Astroparticle physics|Dark matter|Particle physics

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 18:22:37