请输入您要查询的百科知识:

 

词条 Kármán line
释义

  1. Kármán's comments

  2. Definition

  3. Interpretations of the definition

  4. Alternatives to the definition

  5. See also

  6. References

  7. External links

{{Short description|Popular defined boundary of outer space}}{{Redirect|Edge of space|the high-altitude region of Earth's atmosphere|near space|the boundary of the universe|observable universe}}

The Kármán line, or Karman line, is an attempt to define a boundary between Earth's atmosphere and outer space.[2] This is important for legal and regulatory measures; aircraft and spacecraft fall under different jurisdictions and are subject to different treaties.

The Fédération aéronautique internationale (FAI; English: World Air Sports Federation), an international standard-setting and record-keeping body for aeronautics and astronautics, defines the Kármán line as the altitude of {{convert|100|km|mi ft|abbr=off}} above Earth's sea level. Other organizations do not use this definition. For instance, the US Air Force and NASA define the limit to be {{convert|50|miles|km|abbr=off}} above sea level for purposes of awarding personnel with outer space badges.[3] There is no international law defining the edge of space, and therefore the limit of national airspace, and the US is resisting regulatory movement on this front.[3]

The line is named after Theodore von Kármán (1881–1963), a Hungarian American engineer and physicist, who was active primarily in aeronautics and astronautics. He was the first person to calculate at which altitude the atmosphere becomes too thin to support aeronautical flight and arrived at {{convert|83.6|km|mi|abbr=on}} himself.[4] The reason is that a vehicle at this altitude would have to travel faster than orbital velocity to derive sufficient aerodynamic lift to support itself.[5]{{rp|84}} The line is approximately at the turbopause, above which atmospheric gasses are not well-mixed. The mesopause atmospheric temperature minimum has been measured to vary from 85 to 100 km, which places the line at or near the bottom of the thermosphere.

Kármán's comments

In the final chapter of his autobiography Kármán addresses the issue of the edge of outer space:

Where space begins… can actually be determined by the speed of the space vehicle and its altitude above the earth. Consider, for instance, the record flight of Captain Iven Carl Kincheloe Jr. in an X-2 rocket plane. Kincheloe flew 2000 miles per hour (3,200 km/h) at 126,000 feet (38,500 m), or 24 miles up. At this altitude and speed, aerodynamic lift still carries 98 per cent of the weight of the plane, and only two per cent is carried by centrifugal force, or Kepler Force, as space scientists call it. But at 300,000 feet (91,440 m) or 57 miles up, this relationship is reversed because there is no longer any air to contribute lift: only centrifugal force prevails. This is certainly a physical boundary, where aerodynamics stops and astronautics begins, and so I thought why should it not also be a jurisdictional boundary? Haley has kindly called it the Kármán Jurisdictional Line. Below this line space belongs to each country. Above this level there would be free space.[6]

Definition

An atmosphere does not abruptly end at any given height but becomes progressively thinner with altitude. Also, depending on how the various layers that make up the space around the Earth are defined (and depending on whether these layers are considered part of the actual atmosphere), the definition of the edge of space could vary considerably: If one were to consider the thermosphere and exosphere part of the atmosphere and not of space, one might have to extend the boundary to space to at least {{convert|10,000|km|mi|abbr=on}} above sea level. The Kármán line thus is an arbitrary definition based on the following considerations:

An aircraft can only stay aloft by constantly traveling forward relative to the air (rather than the ground), so that the wings can generate lift. The thinner the air, the faster the plane must go to generate enough lift to stay up. The amount of lift provided (which must equal the vehicle's weight in order to maintain level flight) is calculated by the lift equation:[7][8]

where

L is the lift force

ρ is the air density

v is the aircraft's speed relative to the air

S is the aircraft's wing area,

CL is the lift coefficient.[9]

Lift (L) generated is directly proportional to the air density (ρ). All other factors remaining unchanged, true airspeed (v) must increase to compensate for less air density (ρ) at higher altitudes.

An orbiting spacecraft only stays in the sky if the centrifugal component of its movement around the Earth is enough to balance the downward pull of gravity. If it goes slower, the pull of gravity gradually makes its altitude decrease. The required speed is called orbital velocity, and it varies with the height of the orbit. For the International Space Station, or a Space Shuttle in low Earth orbit, the orbital velocity is about 27,000 km per hour (17,000 miles per hour).

For an airplane flying higher and higher, the increasingly thin air provides less and less lift, requiring increasingly higher speed to create enough lift to hold the airplane up. It eventually reaches an altitude where it must fly so fast to generate lift that it reaches orbital velocity. The Kármán line is the altitude where the speed necessary to aerodynamically support the airplane's full weight equals orbital velocity (assuming wing loading of a typical airplane). In practice, supporting full weight wouldn't be necessary to maintain altitude because the curvature of the Earth adds centrifugal lift as the airplane reaches orbital speed. However, the Kármán line definition ignores this effect because orbital velocity is implicitly sufficient to maintain any altitude regardless of atmospheric density. The Kármán line is therefore the highest altitude at which orbital speed provides sufficient aerodynamic lift to fly in a straight line that doesn't follow the curvature of the Earth's surface.

Above 100 kilometers the air density is about 1/2,200,000 the density on the surface.[10] At the Kármán line, the air density ρ is such that

where

v0 is the speed of a circular orbit at the same altitude in vacuum

m is the mass of the aircraft

g is the acceleration due to gravity.

Although the calculated altitude was not exactly 100 km, Kármán proposed that 100 km be the designated boundary to space, because the round number is more memorable, and the calculated altitude varies minutely as certain parameters are varied. An international committee recommended the 100 km line to the FAI, and upon adoption, it became widely accepted as the boundary to space for many purposes.[11] However, there is still no international legal definition of the demarcation between a country's air space and outer space.[12]

Another hurdle to strictly defining the boundary to space is the dynamic nature of Earth's atmosphere. For example, at an altitude of {{convert|1,000|km|mi|abbr=on}}, the atmosphere's density can vary by a factor of five, depending on the time of day, time of year, AP magnetic index, and recent solar flux.{{Citation needed|date=December 2009}}

The FAI uses the Kármán line to define the boundary between aeronautics and astronautics:[13]

{{quotation|
  • Aeronautics — For FAI purposes, aerial activity, including all air sports, within 100 kilometers of Earth's surface.
  • Astronautics — For FAI purposes, activity more than 100 kilometers above Earth's surface.}}

Interpretations of the definition

The expression "edge of space", is often used (by, for instance, the FAI{{citation needed|date=November 2018|reason=|URL=https://www.fai.org/news/statement-about-karman-line}} in some of their publications) to refer to a region below the conventional 100 km boundary to space, which is often meant to include substantially lower regions as well. Thus, certain balloon or airplane flights might be described as "reaching the edge of space". In such statements, "reaching the edge of space" merely refers to going higher than average aeronautical vehicles commonly would.[14][15]

In 1963 Andrew G. Haley discussed the Kármán line in his book Space Law and Government.[16] In a chapter on the limits of national sovereignty, he made a survey of major writers’ views.[16]{{rp|82–96}} He indicated the inherent imprecision of the Line:

The line represents a mean or median measurement. It is comparable to such measures used in the law as mean sea level, meander line, tide line; but it is more complex than these. In arriving at the von Kármán jurisdictional line, myriad factors must be considered – other than the factor of aerodynamic lift. These factors have been discussed in a very large body of literature and by a score or more of commentators. They include the physical constitution of the air; the biological and physiological viability; and still other factors which logically join to establish a point at which air no longer exists and at which airspace ends.[16]{{rp|78,9}}

Alternatives to the definition

The U.S. Air Force definition of an astronaut is a person who has flown higher than {{convert|50|mi|km|abbr=off}} above mean sea level, approximately the line between the mesosphere and the thermosphere. NASA formerly used the FAI's {{convert|100|km|mi|adj=on|sp=us}} figure, though this was changed in 2005, to eliminate any inconsistency between military personnel and civilians flying in the same vehicle,[17] when three veteran NASA X-15 pilots (John B. McKay, William H. Dana and Joseph Albert Walker) were retroactively (two posthumously) awarded their astronaut wings, as they had flown between {{convert|90|km|mi|abbr=on}} and {{convert|108|km|mi|abbr=on}} in the 1960s, but at the time had not been recognized as astronauts.[14] The latter altitude exceeds the modern international definition of the boundary of space.

A recent works by Jonathan McDowell (Harvard-Smithsonian Center for Astrophysics)[18] and Thomas Gangale (University of Nebraska-Lincoln)[19][20] advocate that the demarcation of space should be at {{convert|80|km|mi ft|abbr=on}}, citing as evidence von Kármán's original notes and calculations (which concluded the boundary should be 270,000 ft), plus functional, cultural, physical, technological, mathematical, and historical factors.[3][21]

These findings have prompted the FAI to propose holding a joint conference with the International Astronautical Federation (IAF) in 2019 to "fully explore" the issue.[22]

Another definition proposed in international law discussions defines the lower boundary of space as the lowest perigee attainable by an orbiting space vehicle, but does not specify an altitude.[23] This is the definition adopted by the U.S.military.[24]{{rp|13}} Due to atmospheric drag, the lowest altitude at which an object in a circular orbit can complete at least one full revolution without propulsion is approximately {{convert|150|km|mi|abbr=on}}, whereas an object can maintain an elliptical orbit with perigee as low as about {{convert|130|km|mi|abbr=on}} without propulsion. Above altitudes of approximately {{convert|160|km|sigfig=1|abbr=on}} the sky is completely black.

See also

  • Exosphere
  • Atmosphere of Earth
    • Thermosphere
    • Mesophere
    • Stratosphere
    • Troposphere
  • MW 18014 – the V-2 rocket which was first human-built object to cross the Kármán line

References

1. ^[https://www.weather.gov/jetstream/layers Layers of the Atmosphere],National Weather Service JetStream – Online School for Weather
2. ^{{cite web|url=http://www.fai.org/icare-records/100km-altitude-boundary-for-astronautics|title=The 100 km Boundary for Astronautics|author=Dr. S. Sanz Fernández de Córdoba|publisher=Fédération Aéronautique Internationale| date=2004-06-24|accessdate=2014-05-07| deadurl=yes| archiveurl=https://www.webcitation.org/618QHms8h?url=http://www.fai.org/astronautics/100km.asp| archivedate=2011-08-22|df=}}
3. ^{{cite journal|title = Outer space may have just gotten a bit closer|first = Paul|last = Voosen|date = July 24, 2018|accessdate = April 1, 2019|url = http://www.sciencemag.org/news/2018/07/outer-space-may-have-just-gotten-bit-closer|journal = Science|doi = 10.1126/science.aau8822}}
4. ^{{cite news|title = Why defining the boundary of space may be crucial for the future of spaceflight|first = Loren|last = Grush|date = December 13, 2018|accessdate = April 1, 2019|work = The Verge|url = https://www.theverge.com/2018/12/13/18130973/space-karman-line-definition-boundary-atmosphere-astronauts}}
5. ^{{cite book|first = Michelle M.|last = Donegan|editor2-first = Beth Laura|editor2-last = O'Leary|chapter = Space Basics: Getting to and Staying in Space|year = 2009|title = Handbook of Space Engineering, Archaeology, and Heritage|series = Advances in Engineering|page = 83-89|editor1-first = Ann Garrison|editor1-last = Darrin|publisher = CRC Press|isbn = 978-1-4200-8431-3|chapter-url = https://books.google.com/books?id=dTwIDun4MroC&pg=PA84}}
6. ^Theodore von Kármán with Lee Edson (1967) The Wind and Beyond, page 343
7. ^{{Cite web|url = http://www.wolframalpha.com/input/?i=lift+force+equation|title = Lift Coefficient|accessdate = 2015-03-14|website = Wolfram Alpha Computational Knowledge Engine|publisher = Wolfram Alpha LLC}}
8. ^{{Cite web|url = http://www.grc.nasa.gov/WWW/k-12/airplane/lifteq.html|title = The Lift Equation|date = 2014-06-12|accessdate = 2015-03-14|website = Glenn Research Center|publisher = National Aeronautics and Space Administration|editor-last = Benson|editor-first = Tom}}
9. ^"The Lift Coefficient". Glenn Research Center. NASA. Retrieved May 1, 2015.
10. ^{{citation | first=Tom | last=Squire | date=September 27, 2000 | title=U.S. Standard Atmosphere, 1976 | publisher=NASA | work=Thermal Protection Systems Expert and Material Properties Database | url=http://tpsx.arc.nasa.gov/cgi-perl/alt.pl | accessdate=2011-10-23 | deadurl=yes | archiveurl=https://web.archive.org/web/20111015062917/http://tpsx.arc.nasa.gov/cgi-perl/alt.pl | archivedate=October 15, 2011 | df= }}
11. ^{{Cite web|title=Schneider walks the Walk [A word about the definition of space]|date=2005-10-21|url=http://www.nasa.gov/centers/dryden/news/X-Press/stories/2005/102105_Schneider.html|publisher=NASA|accessdate=2008-04-29}}
12. ^[https://books.google.com/books?id=NR7mFXCB-wgC&pg=PA239&lpg=PA239&dq=legal+boundary+of+space&source=web&ots=Q56qiINocX&sig=bP5Ye5YBYytJpikkfp-lUznLJUk&hl=en International Law: A Dictionary], by Boleslaw Adam Boczek; Scarecrow Press, 2005; page 239: "The issue whether it is possible or useful to establish a legal boundary between airspace and outer space has been debated in the doctrine for quite a long time. . . . no agreement exists on a fixed airspace – outer space boundary . . ."
13. ^PDF on the FAI website {{webarchive|url=https://web.archive.org/web/20140508042926/http://www.fai.org/gliding/system/files/9.5.1+FAI+Nav+Glossary+draft.pdf |date=2014-05-08 }}{{Failed verification|date=May 2014}}
14. ^{{cite web|url=http://www.nasa.gov/centers/dryden/news/X-Press/stories/2005/102105_Wings.html|title=A long-overdue tribute|publisher=NASA|date=2005-10-21|accessdate=2006-10-30}}
15. ^{{cite web|url=http://www.nasa.gov/worldbook/astronaut_worldbook.html |title=World Book @ NASA |publisher=NASA |accessdate=2006-10-18 |deadurl=yes |archiveurl=http://webarchive.loc.gov/all/20090504022327/http://www.nasa.gov/worldbook/astronaut_worldbook.html |archivedate=May 4, 2009 |df= }}
16. ^Andrew G. Haley (1963) Space Law and Government, Appleton-Century-Crofts
17. ^{{cite web |title=NASA - Schneider walks the Walk |url=https://www.nasa.gov/centers/dryden/news/X-Press/stories/2005/102105_Schneider.html |website=www.nasa.gov |accessdate=19 October 2018 |language=en}}
18. ^{{cite journal|title = The edge of space: Revisiting the Karman Line|first = Jonathan C.|last = McDowell|authorlink = Jonathan McDowell||journal = Acta Astronautica|year = 2018|volume = 151|pages = 668-677|doi = 10.1016/j.actaastro.2018.07.003|doi-access = free}}
19. ^{{cite journal|first = Thomas|last = Gangale|title = The Non Karman Line: An Urban Legend of the Space Age|journal = Journal of Space Law|year = 2017|volume = 41|issue = 2|pages = }}
20. ^{{cite book|title = How High the Sky? The Definition and Delimitation of Outer Space and Territorial Airspace in International Law|series = Studies in Space Law|volume = 13|first = Thomas|last = Gangale|year = 2018|isbn = 978-90-04-36602-2|doi = 10.1163/9789004366022|publisher = Koninklijke Brill NV|location = Leiden, The Netherlands}}
21. ^{{cite news|url=https://www.livescience.com/63166-outer-space-border-karman-line.html|title=The Edge of Space Just Crept 12 Miles Closer to Earth|first = Brandon|last = Specktor|date = July 25, 2018|accessdate = April 1, 2019|work = Live Science}}
22. ^{{cite web|title = Statement about the Karman Line|url = https://www.fai.org/news/statement-about-karman-line|date = November 30, 2018|accessdate = April 1, 2019|publisher = World Air Sports Federation}}
23. ^{{cite book|year = 2000|accessdate = April 24, 2012|chapter = Space Environment and Orbital Mechanics|title = Army Space Reference Text|chapter-url = https://fas.org/spp/military/docops/army/ref_text/chap5im.htm|deadurl = yes|archive-date = April 18, 2012|archive-url = https://web.archive.org/web/20120418231343/https://fas.org/spp/military/docops/army/ref_text/chap5im.htm|publisher = United States Army|quote = Where Space Begins: There is no formal definition of where space begins. International law, based on a review of current treaties, conventions, agreements and tradition, defines the lower boundary of space as the lowest perigee attainable by an orbiting space vehicle. A specific altitude is not mentioned. By international law standards aircraft, missiles and rockets flying over a country are considered to be in its national airspace, regardless of altitude. Orbiting spacecraft are considered to be in space, regardless of altitude.
U.S. definition: The U.S. government defines space in the same terms as international law.}}
24. ^{{cite book|title = U.S. Military Space Reference Text|year = 2006|publisher = National Security Space Institute|author = National Security Space Institute in conjuction with U.S. Army Command and General Staff College|accessdate = April 1, 2019|url = https://www.hsdl.org/?view&did=724066|via = Homeland Security Digital Library}}

External links

  • [https://www.webcitation.org/618QHms8h?url=http://www.fai.org/astronautics/100km.asp Article on the Kármán line] at the FAI website
  • Layers of the Atmosphere – NOAA
  • [https://www.youtube.com/watch?v=ztjYDHO6HVU The Kármán Line] music video featuring NASA footage
  • Kármán line calculator
{{Earth's atmosphere}}{{Extreme motion}}{{DEFAULTSORT:Karman line}}

3 : Outer space|Aerospace|Atmospheric boundaries

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/24 11:28:42