请输入您要查询的百科知识:

 

词条 List of books about polyhedra
释义

  1. Books of cut-out kits for making card models

  2. Instructions for making models

  3. Introductory books, also suitable for school use

  4. Undergraduate level

  5. Natural, design and architecture bias

  6. Advanced mathematical texts

  7. Historic books

This is a list of books about polyhedra.

Books of cut-out kits for making card models

  • Jenkins, G. and Bear, M.; Advanced Polyhedra 1: The Final Stellation, Tarquin. {{isbn|1-899618-61-9}}
  • Jenkins, G. and Bear, M.; Advanced Polyhedra 2: The Sixth Stellation, Tarquin. {{isbn|1-899618-62-7}}
  • Jenkins, G. and Bear, M.; Advanced Polyhedra 3: The Compound of Five Cubes, Tarquin. {{isbn|978-1-899618-63-7}}
  • Jenkins, G. and Wild, A.; Mathematical Curiosities, Tarquin. {{isbn|1-899618-35-X}}
  • Jenkins, G. and Wild, A.; More Mathematical Curiosities, Tarquin. {{isbn|1-899618-36-8}}
  • Jenkins, G. and Wild, A.; Make shapes 1, various editions, Tarquin. Simple convex and star polyhedra {{isbn|0-906212-00-6}}
  • Jenkins, G. and Wild, A.; Make shapes 2, various editions, Tarquin. Convex and star polyhedra {{isbn|0-906212-01-4}}
  • Jenkins, G. and Bear, M.; Paper Polyhedra in Colour, Tarquin. {{isbn|1-899618-23-6}}
  • Smith, A.G.; Cut and assemble 3-D geometrical shapes: 10 models in full color, Dover (1986). Convex and star polyhedra.
  • Smith, A.G.; Cut and assemble 3-D star shapes, Dover (1997). Star polyhedra.
  • Smith, A.G.; Easy-to-make 3D shapes in full color, Dover (2000). Simple convex polyhedra.

Instructions for making models

  • Fuse, T.; Unit Origami: Multidimensional Transformations, Japan Publications (1990). {{isbn|0-87040-852-6}}, {{isbn|978-0-87040-852-6}}. Contains origami instructions to build many polyhedra. The shapes vary from simple to extremely complex. The book focuses on origami and construction.
  • Gorham, J.; Crystal models: on the type of an ordinary plait (1888). Reprint, Ed. Sharp, J., Tarquin (2007), also includes reprinted articles by Pargeter, R. and Brunton, J. {{isbn|978-1-899618-68-2}}
  • Gurkewitz, R, Arnstein, B; "3D Geometric Origami: Modular Origami Polyhedra", Dover Publications (1996)
  • Hilton, P., Carlisle, P., Lewis, M. & Pedersen, J,; Build Your Own Polyhedra, Dale Seymour; 2nd edition (1994). {{isbn|0-201-49096-X}}, {{isbn|978-0-201-49096-1}}. Contains instructions for building the Platonic solids and other shapes using paper tape. The focus audience is teachers. Includes some mathematics.
  • Mitchell, D.; Mathematical origami: geometrical shapes and paper folding, Tarquin (1997). {{isbn|978-1-899618-18-7}}
  • Wenninger, M.; Polyhedron models for the classroom, pbk (1974)
  • Wenninger, M.; Polyhedron models, CUP hbk (1971), pbk (1974). Classic work giving instructions for all the uniform polyhedra and some stellations. Includes some basic theory.
  • Wenninger, M.; Spherical models, CUP. Includes some basic theory.
  • Wenninger, M.; Dual models, CUP hbk (1983), pbk (2003). Instructions for all the uniform dual polyhedra. Includes some theoretical discussion.

Introductory books, also suitable for school use

  • Britton, J.; Polyhedra Pastimes, Dale Seymore (2001). {{isbn|0-7690-2782-2}}. An activity-based book for classroom use.
  • Cromwell, P.; [https://books.google.com/books?id=OJowej1QWpoC&printsec=frontcover Polyhedra], CUP hbk (1997), pbk. (1999).
  • Cundy, H.M. & Rollett, A.P.; Mathematical models, 1st Edn. hbk OUP (1951), 2nd Edn. hbk OUP (1961), 3rd Edn. pbk Tarquin (1981). {{isbn|978-0-906212-20-2}} Classic text.
  • Holden; Shapes, space and symmetry (1971), Dover pbk (1991).
  • Pearce, P and Pearce, S: Polyhedra primer, Van Nost. Reinhold (1979), {{isbn|0-442-26496-8}}, {{isbn|978-0-442-26496-3}}.
  • Ball, W.W.R. and Coxeter, H.S.M.; Mathematical recreations and essays, Dover, 13th Edn (1987). Editions up to the 10th were written by Ball. Chapter V provides an introduction to polyhedra.
  • Wachman, A. Burt, M. and Kleinmann, M.; Infinite polyhedra, Technion, 1st Edn. (1974), 2nd Edn. (2005). Pictorial and photographic representations.

Undergraduate level

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}}
  • Coxeter, H.S.M. DuVal, Flather & Petrie; The fifty-nine icosahedra, 3rd Edn. Tarquin.
  • Coxeter, H.S.M.; Twelve geometric essays (1968). Republished as The beauty of geometry: Twelve essays, Dover (1999). Almost half the essays discuss polyhedra or related topics.
  • Fejes Tóth, L.; Regular figures, Pergamon (1964).
  • Lakatos, I.; Proofs and Refutations, Cambridge University Press (1976) – Discussion of proofs of the Euler characteristic.
  • Hilton, P. and Pedersen, J.; A mathematical tapestry: demonstrating the beautiful unity of mathematics, Cambridge University Press (2010). {{isbn|0-521-12821-8}}. About half the chapters discuss polyhedra and their relationships to other areas of mathematics.
  • Richeson, D.S.; Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press (2008).
  • Senechal, M. & Fleck, G. (Eds); Shaping Space a Polyhedral Approach, Birkhauser (1988), {{isbn|0-8176-3351-0}}. Based on workshops and papers presented at the Shaping Space Conference, Smith College, April 1984.
  • Stewart, B.M.; Adventures among the toroids, self-published (1970).
  • Thompson, Sir D'A. W. On growth and form (1943).

Natural, design and architecture bias

  • Critchlow, K.; Order in space, Thames & Hudson (1969).
  • Pearce, P.; Structure in nature is a strategy for design, MIT (1978)
  • Williams, R.; Natural structure, Eudaemon (1972). 2nd Edition renamed The geometrical foundation of natural structure, Dover (1979). 3rd Edition renamed The Geometry of Natural Structure (40th Anniversary Edition), San Francisco: Eudaemon Press (2009).{{isbn|978-0-9823465-1-8}}
    • {{The Geometrical Foundation of Natural Structure (book)}}

Advanced mathematical texts

  • Coxeter, H.S.M.; Regular Polytopes 3rd Edn. Dover (1973).
  • Coxeter, H.S.M.; Regular complex polytopes, CUP (1974).
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}}
  • Several more to add here.

Historic books

Listed in chronological order.

  • Plato; Timaeus {{gr icon}}. Includes a theory of matter based on polyhedra.
  • Euclid; Elements {{gr icon}}. Construction of the five regular solids.
  • Pacioli, L.; Divina proportione (1509) {{la icon}}
  • Jamnitzer, W.; Perspectiva Corporum Regularium (1568). Woodcuts of star polyhedra and other variations.
  • Kepler, J.; De harmonices Mundi (1691) {{la icon}}. English translation: Harmonies of the World, translated by Wallis, C.G. (1939), reprinted Forgotten (2008)
  • Brückner, M.; [https://books.google.com/books?id=dERmNV8lxt4C Vielecke und Vielflache: Theorie und Geschichte], Treubner (1900). {{isbn|978-1-4181-6590-1}}. {{de icon}}. WorldCat English: Polygons and Polyhedra: Theory and History.
  • Brückner, M.; Über die gleicheckig-gleichflächigen diskontinuierlichen und nichtkonvexen Polyeder (1906). {{de icon}}.

2 : Polyhedra|Bibliographies by subject

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 20:32:39