词条 | Lagrange multiplier |
释义 |
In mathematical optimization, the method of Lagrange multipliers (or method of Lagrange's undetermined multipliers, named after Joseph-Louis Lagrange[1]) is a strategy for finding the local maxima and minima of a function subject to equality constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). The great advantage of this method is that it allows the optimization to be solved without explicit parameterization in terms of the constraints. As a result, the method of Lagrange multipliers is widely used to solve challenging constrained optimization problems. The method can be summarized as follows:[2]
Single constraintFor the case of only one constraint and only two choice variables (as exemplified in Figure 1), consider the optimization problem maximize {{math|f(x, y)}} subject to {{math|g(x, y) {{=}} 0}}. (Sometimes an additive constant is shown separately rather than being included in g, in which case the constraint is written {{math|g(x, y) {{=}} c}}, as in Figure 1.) We assume that both {{mvar|f}} and {{mvar|g}} have continuous first partial derivatives. We introduce a new variable ({{mvar|λ}}) called a Lagrange multiplier (or Lagrange undetermined multiplier) and study the Lagrange function (or Lagrangian or Lagrangian expression) defined by where the {{mvar|λ}} term may be either added or subtracted. If {{math|f(x0, y0)}} is a maximum of {{math|f(x, y)}} for the original constrained problem, then there exists {{math|λ0}} such that {{math|(x0, y0, λ0)}} is a stationary point for the Lagrange function (stationary points are those points where the first partial derivatives of are zero). Also, it must be assumed that ≠ 0. However, not all stationary points yield a solution of the original problem, as the method of Lagrange multipliers yields only a necessary condition for optimality in constrained problems.[3][4][5][6][7] Sufficient conditions for a minimum or maximum also exist, but if a particular candidate solution satisfies the sufficient conditions, it is only guaranteed that that solution is the best one locally – that is, it is better than any permissible nearby points. The global optimum can be found by comparing the values of the original objective function at the points satisfying the necessary and locally sufficient conditions. The method of Lagrange multipliers relies on the intuition that at a maximum, {{math|f(x, y)}} cannot be increasing in the direction of any neighboring point where {{math|g {{=}} 0}}. If it were, we could walk along {{math|g {{=}} 0}} to get higher, meaning that the starting point wasn't actually the maximum. We can visualize contours of {{mvar|f}} given by {{math|f(x, y) {{=}} d}} for various values of {{mvar|d}}, and the contour of {{mvar|g}} given by {{math|g(x, y) {{=}} 0}}. Suppose we walk along the contour line with {{math|g {{=}} 0}}. We are interested in finding points where {{mvar|f}} does not change as we walk, since these points might be maxima. There are two ways this could happen:
To check the first possibility (we are following a contour line of {{mvar|f}}), notice that since the gradient of a function is perpendicular to the contour lines, the contour lines of {{mvar|f}} and {{mvar|g}} are parallel if and only if the gradients of {{mvar|f}} and {{mvar|g}} are parallel. Thus we want points {{math|(x, y)}} where {{math|g(x, y) {{=}} 0}} and for some {{mvar|λ}} where are the respective gradients. The constant {{mvar|λ}} is required because although the two gradient vectors are parallel, the magnitudes of the gradient vectors are generally not equal. This constant is called the Lagrange multiplier. (In some conventions {{mvar|λ}} is preceded by a minus sign). Notice that this method also solves the second possibility, that {{mvar|f}} is level: if {{mvar|f}} is level, then its gradient is zero, and setting {{math|λ {{=}} 0}} is a solution regardless of . To incorporate these conditions into one equation, we introduce an auxiliary function and solve Note that this amounts to solving three equations in three unknowns. This is the method of Lagrange multipliers. Note that implies {{math|g(x, y) {{=}} 0}}. To summarize The method generalizes readily to functions on variables which amounts to solving equations in unknowns. The constrained extrema of {{mvar|f}} are critical points of the Lagrangian , but they are not necessarily local extrema of (see Example 2 below). One may reformulate the Lagrangian as a Hamiltonian, in which case the solutions are local minima for the Hamiltonian. This is done in optimal control theory, in the form of Pontryagin's minimum principle. The fact that solutions of the Lagrangian are not necessarily extrema also poses difficulties for numerical optimization. This can be addressed by computing the magnitude of the gradient, as the zeros of the magnitude are necessarily local minima, as illustrated in the numerical optimization example. Multiple constraintsThe method of Lagrange multipliers can be extended to solve problems with multiple constraints using a similar argument. Consider a paraboloid subject to two line constraints that intersect at a single point. As the only feasible solution, this point is obviously a constrained extremum. However, the level set of is clearly not parallel to either constraint at the intersection point (see Figure 3); instead, it is a linear combination of the two constraints' gradients. In the case of multiple constraints, that will be what we seek in general: the method of Lagrange seeks points not at which the gradient of is multiple of any single constraint's gradient necessarily, but in which it is a linear combination of all the constraints' gradients. Concretely, suppose we have constraints and are walking along the set of points satisfying . Every point on the contour of a given constraint function has a space of allowable directions: the space of vectors perpendicular to . The set of directions that are allowed by all constraints is thus the space of directions perpendicular to all of the constraints' gradients. Denote this space of allowable moves by and denote the span of the constraints' gradients by . Then , the space of vectors perpendicular to every element of . We are still interested in finding points where does not change as we walk, since these points might be (constrained) extrema. We therefore seek such that any allowable direction of movement away from is perpendicular to (otherwise we could increase by moving along that allowable direction). In other words, . Thus there are scalars {{math|λ1, λ2, ..., λM}} such that These scalars are the Lagrange multipliers. We now have of them, one for every constraint. As before, we introduce an auxiliary function and solve which amounts to solving equations in unknowns. The method of Lagrange multipliers is generalized by the Karush–Kuhn–Tucker conditions, which can also take into account inequality constraints of the form {{math|h(x) ≤ c}}. Modern formulation via differentiable manifoldsThe problem of finding the local maxima and minima subject to constraints can be generalized to finding local maxima and minima on a differentiable manifold .[8] In what follows, it is not necessary that be a Euclidean space, or even a Riemannian manifold. All appearances of the gradient (which depends on a choice of Riemannian metric) can be replaced with the exterior derivative . Single constraintLet be a smooth manifold of dimension . Suppose that we wish to find the stationary points of a smooth function when restricted to the submanifold defined by where is a smooth function for which 0 is a regular value of . Let and be the exterior derivatives. Stationarity for the restriction at means Equivalently, the kernel contains In other words, and are proportional vectors. For this it is necessary and sufficient that the following system of equations holds: where denotes the exterior product. The stationary points are the solutions of the above system of equations plus the constraint Note that the equations are not independent, since the left-hand side of the equation belongs to the subvariety of consisting of decomposable elements. In this formulation, it is not necessary to explicitly find the Lagrange multiplier, a number such that Multiple constraintsLet and be as in the above section regarding the case of a single constraint. Rather than the function described there, now consider a smooth function with component functions for which is a regular value. Let be the submanifold of defined by is a stationary point of if and only if contains . For convenience let and where denotes the tangent map or Jacobian The subspace has dimension smaller than that of , namely and belongs to if and only if belongs to the image of Computationally speaking, the condition is that belongs to the row space of the matrix of or equivalently the column space of the matrix of (the transpose). If denotes the exterior product of the columns of the matrix of the stationary condition for at becomes Once again, in this formulation it is not necessary to explicitly find the Lagrange multipliers, the numbers such that Interpretation of the Lagrange multipliersOften the Lagrange multipliers have an interpretation as some quantity of interest. For example, if the Lagrangian expression is then So, {{math|λk}} is the rate of change of the quantity being optimized as a function of the constraint parameter. As examples, in Lagrangian mechanics the equations of motion are derived by finding stationary points of the action, the time integral of the difference between kinetic and potential energy. Thus, the force on a particle due to a scalar potential, {{math|F {{=}} −∇V}}, can be interpreted as a Lagrange multiplier determining the change in action (transfer of potential to kinetic energy) following a variation in the particle's constrained trajectory. In control theory this is formulated instead as costate equations. Moreover, by the envelope theorem the optimal value of a Lagrange multiplier has an interpretation as the marginal effect of the corresponding constraint constant upon the optimal attainable value of the original objective function: if we denote values at the optimum with an asterisk, then it can be shown that For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context {{math|λ*}} is the marginal cost of the constraint, and is referred to as the shadow price. Sufficient conditions{{Main|Hessian matrix#Bordered Hessian}}Sufficient conditions for a constrained local maximum or minimum can be stated in terms of a sequence of principal minors (determinants of upper-left-justified sub-matrices) of the bordered Hessian matrix of second derivatives of the Lagrangian expression.[9] ExamplesExample 1Example 1aSuppose we wish to maximize subject to the constraint . The feasible set is the unit circle, and the level sets of {{mvar|f}} are diagonal lines (with slope −1), so we can see graphically that the maximum occurs at , and that the minimum occurs at . For the method of Lagrange multipliers, the constraint is hence Now we can calculate the gradient: and therefore: Notice that the last equation is the original constraint. The first two equations yield By substituting into the last equation we have: so which implies that the stationary points of are Evaluating the objective function {{mvar|f}} at these points yields Thus the constrained maximum is and the constrained minimum is . Example 1bNow we modify the objective function of Example 1a so that we minimize instead of again along the circle . Now the level sets of f are still lines of slope −1, and the points on the circle tangent to these level sets are again and . These tangency points are maxima of f. On the other hand, the minima occur on the level set for f = 0 (since by its construction f cannot take negative values), at and , where the level curves of f are not tangent to the constraint. The condition that correctly identifies all four points as extrema; the minima are characterized in particular by Example 2In this example we will deal with some more strenuous calculations, but it is still a single constraint problem. Suppose we want to find the maximum values of with the condition that the {{mvar|x}} and {{mvar|y}} coordinates lie on the circle around the origin with radius {{radic|3}}, that is, subject to the constraint As there is just a single constraint, we will use only one multiplier, say {{mvar|λ}}. The constraint {{math|g(x, y)}} is identically zero on the circle of radius {{radic|3}}. See that any multiple of {{math|g(x, y)}} may be added to {{math|f(x, y)}} leaving {{math|f(x, y)}} unchanged in the region of interest (on the circle where our original constraint is satisfied). Apply the ordinary Langrange multiplier method. Let: Now we can calculate the gradient: And therefore: Notice that (iii) is just the original constraint. (i) implies {{math|x {{=}} 0}} or {{math|λ {{=}} −y}}. If {{math|x {{=}} 0}} then by (iii) and consequently {{math|λ {{=}} 0}} from (ii). If {{math|λ {{=}} −y}}, substituting in (ii) we get {{math|x2 {{=}} 2y2}}. Substituting this in (iii) and solving for {{mvar|y}} gives {{math|y {{=}} ±1}}. Thus there are six critical points of : Evaluating the objective at these points, we find that Therefore, the objective function attains the global maximum (subject to the constraints) at and the global minimum at The point is a local minimum of f and is a local maximum of f, as may be determined by consideration of the Hessian matrix of . Note that while is a critical point of , it is not a local extremum of We have Given any neighbourhood of , we can choose a small positive and a small of either sign to get values both greater and less than . This can also be seen from the fact that the Hessian matrix of evaluated at this point (or indeed at any of the critical points) is an indefinite matrix. Each of the critical points of is a saddle point of Example 3: EntropySuppose we wish to find the discrete probability distribution on the points with maximal information entropy. This is the same as saying that we wish to find the least structured probability distribution on the points . In other words, we wish to maximize the Shannon entropy equation: For this to be a probability distribution the sum of the probabilities at each point must equal 1, so our constraint is: We use Lagrange multipliers to find the point of maximum entropy, , across all discrete probability distributions on . We require that: which gives a system of {{mvar|n}} equations, , such that: Carrying out the differentiation of these {{mvar|n}} equations, we get This shows that all are equal (because they depend on {{mvar|λ}} only). By using the constraint we find Hence, the uniform distribution is the distribution with the greatest entropy, among distributions on {{mvar|n}} points. Example 4: Numerical optimizationThe critical points of Lagrangians occur at saddle points, rather than at local maxima (or minima).[10] Unfortunately, many numerical optimization techniques, such as hill climbing, gradient descent, some of the quasi-Newton methods, among others, are designed to find local maxima (or minima) and not saddle points. For this reason, one must either modify the formulation to ensure that it's a minimization problem (for example, by extremizing the square of the gradient of the Lagrangian as below), or else use an optimization technique that finds stationary points (such as Newton's method without an extremum seeking line search) and not necessarily extrema. As a simple example, consider the problem of finding the value of {{mvar|x}} that minimizes , constrained such that . (This problem is somewhat pathological because there are only two values that satisfy this constraint, but it is useful for illustration purposes because the corresponding unconstrained function can be visualized in three dimensions.) Using Lagrange multipliers, this problem can be converted into an unconstrained optimization problem: The two critical points occur at saddle points where {{math|x {{=}} 1}} and {{math|x {{=}} −1}}. In order to solve this problem with a numerical optimization technique, we must first transform this problem such that the critical points occur at local minima. This is done by computing the magnitude of the gradient of the unconstrained optimization problem. First, we compute the partial derivative of the unconstrained problem with respect to each variable: If the target function is not easily differentiable, the differential with respect to each variable can be approximated as where is a small value. Next, we compute the magnitude of the gradient, which is the square root of the sum of the squares of the partial derivatives: (Since magnitude is always non-negative, optimizing over the squared-magnitude is equivalent to optimizing over the magnitude. Thus, the ''square root" may be omitted from these equations with no expected difference in the results of optimization.) The critical points of {{mvar|h}} occur at {{math|x {{=}} 1}} and {{math|x {{=}} −1}}, just as in . Unlike the critical points in , however, the critical points in {{mvar|h}} occur at local minima, so numerical optimization techniques can be used to find them. ApplicationsControl theoryIn optimal control theory, the Lagrange multipliers are interpreted as costate variables, and Lagrange multipliers are reformulated as the minimization of the Hamiltonian, in Pontryagin's minimum principle. Nonlinear programmingThe Lagrange multiplier method has several generalizations. In nonlinear programming there are several multiplier rules, e.g., the Carathéodory–John Multiplier Rule and the Convex Multiplier Rule, for inequality constraints.[11] See also{{div col}}
References1. ^Mécanique Analytique sect. IV, 2 vols. Paris, 1811 https://archive.org/details/mcaniqueanalyt01lagr 2. ^{{cite book|last1=Bramanti|first1=Marco|title=Matematica: Calcolo Infinitesimale e Algebra Lineare|date=2004|publisher=Zanichelli|location=Bologna|isbn=978-88-08-07547-5|pages=462–468|edition= 2nd}} 3. ^{{cite book | last = Bertsekas | first = Dimitri P.| authorlink = Dimitri P. Bertsekas | title = Nonlinear Programming| edition= Second | publisher = Athena Scientific | year = 1999 | location = Cambridge, MA. | isbn = 1-886529-00-0 |ref=harv}} 4. ^{{springer | id=Lagrange_multipliers | title=Lagrange multipliers| first=I.B. | last=Vapnyarskii }}. 5. ^{{cite book|last=Lasdon|first=Leon S.|title=Optimization Theory for Large Systems|publisher=Dover |location=Mineola, New York|year=2002 |edition=Reprint of the 1970 Macmillan |mr=1888251 |isbn=0-486-41999-1 }} 6. ^{{cite book|last1=Hiriart-Urruty|first1=Jean-Baptiste|last2=Lemaréchal|first2=Claude|chapter=XII Abstract duality for practitioners|title=Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods|series=Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]| volume=306 |publisher=Springer-Verlag |location=Berlin|year=1993| isbn=3-540-56852-2|mr=1295240|authorlink2=Claude Lemaréchal|ref=harv|pages=136–193 (and Bibliographical comments on pp. 334–335)}} 7. ^{{Cite book |title=Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000 |last=Lemaréchal |first=Claude |publisher=Springer-Verlag |year=2001 |isbn=3-540-42877-1 |editor-last=Jünger |editor-first=Michael |series=Lecture Notes in Computer Science |volume=2241 |location=Berlin |pages=112–156 |chapter=Lagrangian relaxation |doi=10.1007/3-540-45586-8_4 |mr=1900016 |author-link=Claude Lemaréchal |editor-last2=Naddef |editor-first2=Denis}} 8. ^{{cite book|last1=Lafontaine|first1=Jacques|title=An Introduction to Differential Manifolds|publisher=Springer|isbn=9783319207353|page=70|url=https://books.google.com/books?id=KNhJCgAAQBAJ&pg=PA70 |year=2015 |ref=harv }} 9. ^{{cite book|authorlink=Alpha Chiang |last=Chiang |first= Alpha C. |title=Fundamental Methods of Mathematical Economics |publisher=McGraw-Hill |edition=Third |date=1984 |page=386 |isbn=0-07-010813-7 }} 10. ^{{cite book|first=Michael T.|last= Heath|authorlink=Michael Heath (computer scientist)|title=Scientific Computing: An Introductory Survey|url=https://books.google.com/books?id=gwBrMAEACAAJ|pages=203|year=2005|publisher=McGraw-Hill|isbn=978-0-07-124489-3|ref=harv}} 11. ^{{Cite journal |last=Pourciau |first=Bruce H. |date=1980 |title=Modern Multiplier Rules |url=http://www.maa.org/programs/maa-awards/writing-awards/modern-multiplier-rules |journal=The American Mathematical Monthly |volume=87 |issue=6 |pages=433–452 |doi=10.2307/2320250 |jstor=2320250}} Further reading
External links{{wikibooks|Calculus optimization methods|Lagrange multipliers}}Exposition
For additional text and interactive applets
3 : Multivariable calculus|Mathematical optimization|Mathematical and quantitative methods (economics) |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。