词条 | Lamé's special quartic |
释义 |
where .[1] It looks like a rounded square with "sides" of length and centered on the origin. This curve is a squircle centered on the origin, and it is a special case of a superellipse.[2] Because of Pierre de Fermat's only surviving proof, that of the n = 4 case of Fermat's Last Theorem, if r is rational there is no non-trivial rational point (x, y) on this curve (that is, no point for which both x and y are non-zero rational numbers). References1. ^{{citation|title=Analytic Geometry Problems|volume=108|series=College Outline Series|first=Cletus Odia|last=Oakley|publisher=Barnes & Noble|year=1958|page=171}}. {{DEFAULTSORT:Lame's special quartic}}{{algebraic-geometry-stub}}2. ^{{citation|title=The Words of Mathematics: An Etymological Dictionary of Mathematical Terms Used in English|series=MAA Spectrum|first=Steven|last=Schwartzman|publisher=Mathematical Association of America|year=1994|isbn=9780883855119|page=212|url=https://books.google.com/books?id=SRw4PevE4zUC&pg=PA212}}. 1 : Equations |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。