词条 | Locally normal space |
释义 |
In mathematics, particularly topology, a topological space X is locally normal if intuitively it looks locally like a normal space. More precisely, a locally normal space satisfies the property that each point of the space belongs to a neighbourhood of the space that is normal under the subspace topology. Formal definitionA topological space X is said to be locally normal if and only if each point, x, of X has a neighbourhood that is normal under the subspace topology. Note that not every neighbourhood of x has to be normal, but at least one neighbourhood of x has to be normal (under the subspace topology). Note however, that if a space were called locally normal if and only if each point of the space belonged to a subset of the space that was normal under the subspace topology, then every topological space would be locally normal. This is because, the singleton {x} is vacuously normal and contains x. Therefore, the definition is more restrictive. Examples and properties
See also
References{{Topology-stub}} 2 : Topology|Properties of topological spaces |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。