词条 | Lukacs's proportion-sum independence theorem |
释义 |
In statistics, Lukacs's proportion-sum independence theorem is a result that is used when studying proportions, in particular the Dirichlet distribution. It is named for Eugene Lukacs.[1] The theoremIf Y1 and Y2 are non-degenerate, independent random variables, then the random variables are independently distributed if and only if both Y1 and Y2 have gamma distributions with the same scale parameter. CorollarySuppose Y i, i = 1, ..., k be non-degenerate, independent, positive random variables. Then each of k − 1 random variables is independent of if and only if all the Y i have gamma distributions with the same scale parameter.[2] References1. ^{{Cite journal|doi= 10.1214/aoms/1177728549|author= Lukacs, Eugene|title=A characterization of the gamma distribution|journal=Annals of Mathematical Statistics|volume=26|year=1955|pages=319–324}} 2. ^{{cite journal| last=Mosimann| first=James E.| title=On the compound multinomial distribution, the multivariate distribution, and correlation among proportions| journal=Biometrika| year=1962| volume=49| issue=1 and 2|pages=65–82|jstor=2333468| doi=10.1093/biomet/49.1-2.65}}
2 : Probability theorems|Characterization of probability distributions |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。