词条 | Maass wave form |
释义 |
In mathematics, Maass wave forms or Maass forms are studied in the theory of automorphic forms. Maass wave forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are Eigenforms of the hyperbolic Laplace Operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to the modular forms the Maass wave forms need not be holomorphic. They were studied first by Hans Maass in 1949. General remarksThe group operates on the upper half plane by fractional linear transformations : It can be extended to an operation on by defining : The Radon measure defined on is invariant under the operation of . Let be a discrete subgroup of . A fundamental domain for is an open set , so that there exists a system of representatives of with A fundamental domain for the modular group is given by (see Modular form). A function is called -invariant, if holds for all and all . For every measurable, -invariant function the equation holds. Here the measure on the right side of the equation is the induced measure on the quotient Classic Maass wave formsDefinition of the hyperbolic Laplace operatorThe hyperbolic Laplace operator on is defined as Definition of a Maass wave formA Maass wave form for the group is a complex-valued smooth function on so that If we call Maass cusp form. Relation between Maass wave forms and Dirichlet seriesLet be a Maass wave form. Since , has a Fourier-expansion of the form , with coefficient functions . It is easy to show that is Maass cusp form if and only if . We can calculate the coefficient functions in a precise way. For this we need the Bessel function . Definition: The Bessel function is defined as . The integral converges locally uniformly absolutely for in and the inequality holds for all . Therefore, decreases exponentially for . Furthermore, we have for all , . Theorem : The Fourier coefficients of a Maass wave formLet be the eigenvalue of the Maass wave form f corresponding to. There is a which is unique up to sign such that . Then the Fourier coefficients of are if . If we get Proof: We have . By the definition of the Fourier coefficients we get for . Together it follows that for . In (1) we used that the nth Fourier coefficient of is for the first summation term. In the second term we changed the order of integration and differentiation, which is allowed since f is smooth in y . We get a linear differential equation of second degree : For one can show, that for every solution there exist unique coefficients with the property . For every solution is of the form for unique . Here and are Bessel functions. The Bessel functions grow exponentially, while the Bessel functions decrease exponentially. Together with the polynomial growth condition 3) we get : (also ) for a unique Even and odd Maass Waveforms : Let . Then i operates on all functions by . i commutes with the hyperbolic Laplacian. A Maass wave form is called even, if and odd if. If f is a Maass wave form, then is an even Maass wave form and an odd Maass wave form and it holds that . Theorem: The L-Function of a Maass wave formLet be a Maass cusp form. We define the L-function L of as . Then the series converges for and we can continue it to a whole function on . If f is even or odd we get . Here if is even and if is odd. Then satisfies the functional equation . Example: The non-holomorphic Eisenstein-series EThe non-holomorphic Eisenstein-series is defined for and as where is the Gamma function. The series converges absolutely in for and locally uniformly in , since one can show, that the series converges absolutely in , if . More precisely it converges uniformly on every set , for every compact set and every . Theorem: E is a Maass waveformWe only show - invariance and the differential equation. A proof of the smoothness can be found in Deitmar or Bump. The growth condition follows from the theorem of the Fourier-expansion of E. We will first show the - invariance. Let be the stabilizer group corresponding to the operation of on . Then the following Lemma holds : Lemma: The map is a bijection. Proposition: E is - invariant(a) Let . Then converges absolutely in for and it holds that . (b) We have for all . Proof:(a): For it holds that . Therefore, we obtain by using the Lemma. That proves the absolute convergence in for. Furthermore, it follows that since the map is a bijection. (a) follows. (b): For we get . Together with (a), is also invariant under . Proposition : E is an eigenform of the hyperbolic Laplace operatorWe need the following Lemma : Lemma: commutes with the operation of on . More preciselyholds for all Proof: The group is generated by the elements of the form with and with and . One calculates the claim for these generators and obtains the claim for all .Since it is sufficient to show the differential equation for . It holds that Furthermore, one has . Since the Laplace Operator commutes with the Operation of , we get and so . for all . Therefore, the differential equation holds for E in . In order to obtain the claim for all , consider the function . By explicitly calculating the Fourier expansion of this function, we get that it is meromorphic. Since it vanishes for , it must be the zero function by the Identity theorem. Theorem : The Fourier-expansion of EThe nonholomorphic Eisenstein series has a Fourier expansion where . If , has a meromorphic continuation on . It is holomorphic except for simple poles at . The Eisenstein series satisfies the functional equation for all . Locally uniformly in the growth condition holds, where The meromorphic continuation of E is very important in the spectral theory of the hyperbolic Laplace Operator. Maas wave forms of weight kCongruence subgroupsFor let be the kernel of the canonical projection . We call principal congruence subgroup of level . A subgroup is called congruence subgroup, if there exists , so that . All congruence subgroups are discrete. Let . For a congruence subgroup ,let be the image of in . If S is a system of representatives of , then is a fundamental domain for . The set is uniquely determined by the fundamental domain . Furthermore, is finite. The points for are called cusps of the fundamental domain . They are a subset of . For every cusp there exists with . Definition: Maass wave forms of weightLet be a congruence subgroup and . We define the hyperbolic Laplace operator of weight as , This is a generalization of the hyperbolic Laplace operator . We define an operation of on by where . It can be shown, that holds for all , and every . Therefore, operates on the vector space . Definition : A Maass wave form of weight for the group is a function , which is an Eigenform of and is of moderate growth at the cusps. The term moderate growth at cusps will need clarification : Let be a congruence subgroup. Then is a cusp and we say that a function aus is of moderate growth at , if is bounded by a polynomial in y for . Let be another cusp . Then there exists ein with . Let . One calculates, that is an element of, where is the congruence subgroup . We say is of moderate growth at the cusp , if is of moderate growth at . If contains a principal congruence subgroup of level , we say that is cuspidal at infinity, if holds for all . We say that is cuspidal at the cusp , if is cuspidal at infinity. If is cuspidal at every cusp, we call cusp form. Cuspidal Maass wave forms are called Maass cusp forms. We give a simple example of a Maass wave form of weight for the modular group : Example : Let be a modular form of weight for the group . Then is a Maass wave form of weight for the group . The spectral problemLet be a congruence subgroup of . and let be the vector space of all measurable functions with for all . Furthermore, define the vector space modulo functions with . The integral is well definded, since the function is - invariant. a Hilbert space with scalar product The operator can be defined in a vector space which is dense in . There is a positive semidefinite symmetric operator. It can be shown, that there exists a unique selfadjoint continuation on . We define as the space of all cusp forms . Then operates on and has a discrete spectrum. The spectrum belonging to the orthogonal complement has a continuous part and can be described with the help of (modified) non-holomorphic Eisenstein series, their meromorphic continuations and their residues. (See Bump or Iwaniec) . If is a discrete (torsionfree) subgroup of , so that the quotient is compact, the spectral problem simplifies. This is because a discrete cocompact subgroup has no cusps. Here all of the space is a sum of eigenspaces. Embedding into the spaceis a unimodular locally compact group with the topology of . Let be a congruence subgroup. Since is discrete in , is closed in . The group is unimodular and since the counting measure is a Haar-measure on the discrete group , is also unimodular. By the Quotient Integral Formula there exists a - right-invariant Radon measure on the locally compact space . Let be the corresponding - space. The space decomposes into a Hilbert space direct sum where . The Hilbert-space can be embedded isometrically into the Hilbert space . The isometry is given by the map Therefore, all Maass cusp forms for the congruence group can be thought of as elements of . is a Hilbert space carrying an operation of the group , the so-called right regular representation : One can easily show, that is a unitary representation of on the Hilbert space . One is interested in a decomposition into irreducible suprepresentations. This is only possible if is cocompact. If not, there is also a continuous Hilbert-integral part. The interesting part is, that the solution of this problem also solves the spectral problem of Maass wave forms. (see Bump, C. 2.3) Maass cusp formA Maass cusp form, a subset of Maass wave forms, is a function on the upper half-plane that transforms like a modular form but need not be holomorphic. They were first studied by Hans Maass in {{harvtxt|Maass|1949}}. DefinitionLet k be an integer, s be a complex number, and Γ be a discrete subgroup of SL2(R). A Maass form of weight k for Γ with Laplace eigenvalue s is a smooth function from the upper half-plane to the complex numbers satisfying the following conditions:
A weak Maass form is defined similarly but with the third condition replaced by "The function ƒ has at most linear exponential growth at cusps". Moreover, ƒ is said to be harmonic if it is annihilated by the Laplacian operator. Major resultsLet ƒ be a weight 0 Maass cusp form. Its normalized Fourier coefficient at a prime p is bounded by p7/64 + p−7/64. This theorem is due to Henry Kim and Peter Sarnak. It is an approximation toward Ramanujan-Petersson conjecture. Higher dimensionsMaass cusp forms can be regarded as automorphic forms on GL(2). It is natural to define Maass cusp forms on GL(n) as spherical automorphic forms on GL(n) over the rational number field. Their existence is proved by Miller, Mueller, etc. Automorphic representations of the adele groupThe GroupLet be a commutative ring with unit and let be the group of matrices with entries in and invertible determinant . Let be the ring of rational adeles, the ring of the finite (rational) adeles and for a prime number let be the field of p-adic numbers. Furthermore, let be the ring of the p-adic integers (see Adele ring). Define . Both and are locally compact unimodular groups if one equips them with the subspace topologies of respectively . The group is isomorphic to the group . Here the product is the resctricted product , concerning the compact, open subgroups of . Then locally compact group, if we equip it with the restricted product topology. The group is isomorphic to the group and is a locally compact group with the product topology, since and are both locally compact. Let be the ring . The subgroup is a maximal compact, open subgroup of and can be thought of as a subgroup of , when we consider the embedding . We define as the center of , that means is the group of all diagonal matrices of the form , where . We think of as a subgroup of since we can embed the group by . The group is embedded diagonally in , which is possible, since all four entries of a can only have finite amount of prime divisors and therefore for all but finitely many prime numbers . Let be the group of all with . (see Adele Ring for a definition of the absolute value of an Idele). One can easily calculate, that is a subgroup of . With the one-to-one map we can identify the groups and with each other. The group is dense in and discrete in . The Quotient is not compact but has finite Haar-measure. Therefore, is a lattice of , similar to the classical case of the modular group and . By harmonic analysis one also gets that is unimodular. Adelisation of CuspformsWe now want to embed the classical Maass cusp forms of weight 0 for the modular group into . This can be achieved with the "strong approximationtheorem", which states, that the map is a - equivariant homeomorphism. So we get and furthermore . Maass cuspforms of weight 0 for modular group can be embedded into . By the strong approximation theorem this space is unitary isomorphic to which is a subspace of . In the same way one can embed the classical holomorphic cusp forms. With a small generalization of the approximation theorem, one can embed all Maass cusp forms (as well as the holomorphic cuspforms) of any weight for any congruence subgroup in . We call the space of automorphic forms of the adele group. Cusp forms of the adele groupLet be a Ring and let be the group of all , where . This group is isomorphic to the additive group of R. We call a function cusp form, if holds for almost all. Let (or just ) be the vectorspace of these cusp forms. is a closed subspace of and it is invariant under the right regular representation of . One is again intereseted in a decomposition of into irreducible closed subspaces . We have the following theorem : The space decomposes in a direct sum of irreducible Hilbert-spaces with finite multiplicities : The calculation of these multiplicities is one of the most important and most difficult problems in the theory of automorphic forms. Cuspial representations of the adele groupAn irreducible representation of the group is called cuspidal, if it is isomorphic to a subrepresentation of ist. An irreducible representation of the group is called admissible if there exists a compact subgroup of , so that for all . One can show, that every cuspidal representation is admissible. The admissibility is needed to proof the so-called Tensorprodukt-Theorem anzuwenden, which says, that every irreducible, unitary and admissible representation of the group is isomorphic to an infinite tensor product . The are irreducible representations of the group . Almost all of them need to be umramified. (A representation of the group is called unramified, if the vector space is not the zero space.) A construction of an infinite tensor product can be found in Deitmar,C.7. Automorphic L-FunctionsLet be an irreducible, admissible unitary representation of . By the tensor product theorem, is of the form (see cuspidal representations of the adele group) Let be a finite set of places containing and all ramified places . One defines the global Hecke - function of as where is a so-called local L - function of the local representation . A construction of local L - functions can be found in Deitmar C. 8.2. If is a cuspidal representation, the L-Funktion has a meromorphic continuation on . This is possible, since , satisfies certain functional equations. See also
References{{Refbegin}}
1 : Automorphic forms |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。