- See also
- References
In the mathematical theory of random matrices, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Ukrainian mathematicians Vladimir Marchenko and Leonid Pastur who proved this result in 1967. If denotes a random matrix whose entries are independent identically distributed random variables with mean 0 and variance , let and let be the eigenvalues of (viewed as random variables). Finally, consider the random measure Theorem. Assume that so that the ratio . Then (in weak* topology in distribution), where and with The Marchenko–Pastur law also arises as the free Poisson law in free probability theory, having rate and jump size . See also - Wigner semicircle distribution
- Tracy–Widom distribution
References- {{cite journal |last=Götze |first=F. |last2=Tikhomirov |first2=A. |year=2004 |title=Rate of convergence in probability to the Marchenko–Pastur law |journal=Bernoulli |volume=10 |issue=3 |pages=503–548 |doi=10.3150/bj/1089206408 }}
- {{cite journal |last=Marchenko |first=V. A. |last2=Pastur |first2=L. A. |year=1967 |title=Распределение собственных значений в некоторых ансамблях случайных матриц |trans-title=Distribution of eigenvalues for some sets of random matrices |language=ru |journal=Mat. Sb. |series=N.S. |volume=72 |issue=114:4 |pages=507–536 |doi=10.1070/SM1967v001n04ABEH001994 }} Link to free-access pdf of Russian version
- {{cite book |last=Nica |first=A. |authorlink2=Roland Speicher |last2=Speicher |first2=R. |year=2006 |title=Lectures on the Combinatorics of Free probability theory |publisher=Cambridge Univ. Press |isbn=0-521-85852-6 |pages=204, 368 }} Link to free download [https://www.google.com/search?tbs=bks:1&q=isbn:0521858526 Another free access site]
{{ProbDistributions|continuous-semi-infinite}}{{DEFAULTSORT:Marchenko-Pastur distribution}} 2 : Probability distributions|Random matrices |