词条 | Limb-girdle muscular dystrophy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
| name = Limb-girdle muscular dystrophy | image = Protein MYOT PDB 2KDG.png | caption = Protein MYOT (also known as TTID one of the many genes whose mutations are responsible for this condition) | pronounce = | field = | synonyms = | symptoms = | complications = | onset = | duration = | types = LGMD1 and LGMD2[1] | causes = | risks = | diagnosis = Immunohistochemical dystrophin tests[2] | differential = | prevention = | treatment = Occupational, speech and physical therapy[3] | medication = | prognosis = | frequency = | deaths = }}Limb-girdle muscular dystrophy (LGMD) or Erb's muscular dystrophy [1] is a genetically and clinically heterogeneous group of rare muscular dystrophies.[2] It is characterised by progressive muscle wasting which affects predominantly hip and shoulder muscles. LGMD has an autosomal pattern of inheritance and currently has no known cure or treatment.[3][7] Signs and symptomsThe symptoms of an individual with Limb-girdle Muscular Dystrophy (LGMD) generally has great difficulty walking, going both up and down stairs and raising from a chair. The inability to bend over or squat down is also present. Because of these difficulties, falling can occur on a regular basis. Lifting certain objects, as well as difficulty extending your arms out or above your head, varies from difficult to impossible depending on the severity. Eventually the ability to walk/run deteriorates.[8][2] Further presentations an individual with LGMD might have are: {{Listen|filename=Pvc.ogg|title=PVC (a type of palpitation) recording|description=An audio clip recording of a PVC symptom, made with a cardiac event monitor.|format=Ogg}}{{columns-list|colwidth=30em|
}} The disease inevitably gets worse over time, although progression is more rapid in some patients than others. Eventually the disease can affect other muscles such as the ones located in the face. The disease commonly leads to dependence on a wheelchair within years of symptom onset, but there is high inter-patient variability, with some patients maintaining mobility.[7][5] The muscle weakness is generally symmetric, proximal, and slowly progressive. In most cases, pain is not present with LGMD, and mental function is not affected. LGMD can begin in childhood, adolescence, young adulthood or even later, the age of onset is usually between 10 and 30. Both genders are affected equally, when limb-girdle muscular dystrophy begins in childhood the progression appears to be faster and the disease more disabling. When the disorder begins in adolescence or adulthood the disease is generally not as severe and progresses more slowly.There is no sensory neuropathy or autonomic or visceral dysfunction at presentation.{{medical citation needed|date=April 2016}} GeneticsIn terms of the genetics LGMD is an inherited disorder, though it may be inherited as a dominant or recessive genetic defect. The result of the defect is that the muscles cannot properly form certain proteins needed for normal muscle function. Several different proteins can be affected, and the specific protein that is absent or defective identifies the specific type of muscular dystrophy. Among the proteins affected in LGMD are α, β, γ and δ sarcoglycans. The sarcoglycanopathies could be possibly amenable to gene therapy.[6] DiagnosisThe diagnosis of limb-girdle muscular dystrophy can be done via muscle biopsy, which will show the presence of muscular dystrophy, and genetic testing is used to determine which type of muscular dystrophy a patient has. Immunohistochemical dystrophin tests can indicate a decrease in dystrophin detected in sarcoglycanopathies. In terms of sarcoglycan deficiency there can be variance (if α-sarcoglycan and γ-sarcoglycan are not present then there's a mutation in LGMD2D).[2] The 2014 Evidence-based guideline summary: Diagnosis and treatment of limb-girdle and distal dystrophies indicates that individuals suspected of having the inherited disorder should have genetic testing. Other tests/analysis are:[7][8]
TypesThe "LGMD1" family is autosomal dominant, and the "LGMD2" family is autosomal recessive.[9] Limb-girdle muscular dystrophy is explained in terms of gene, locus, OMIM and type as follows:
TreatmentThere are few studies corroborating the effectiveness of exercise for limb-girdle muscular dystrophy. However studies have shown that exercise can, in fact, damage muscles permanently due to intense muscle contraction.[11] Physical therapy may be required to maintain as much muscle strength and joint flexibility as possible. Calipers may be used to maintain mobility and quality of life. Careful attention to lung and heart health is required, corticosteroids in LGMD 2C-F individuals, shows some improvement [4] Additionally individuals can follow management that follows:[8]
In terms of the prognosis of limb-girdle muscular dystrophy in its mildest form, affected individuals have near-normal muscle strength and function. LGMD isn't typically a fatal disease, though it may eventually weaken the heart and respiratory muscles, leading to illness or death due to secondary disorders. The frequency of limb-girdle muscular dystrophy ranges from 1 in 14,500 (in some instances 1 in 123,000)[2][9] ResearchThere is a variety of research under way targeted at various forms of limb-girdle muscular dystrophy. Among the methods thought to hold promise for treatment include gene transfer therapy,[12] which works by inserting in cells of defective genes with a healthy gene.[13] According to a review by Bengtsson et al. some success with AAV-mediated gene therapies (for different disorders) have increased interest in researchers, with CRISPR/Cas9 and exon-skipping helping these therapeutic goals along. Limb-girdle muscular dystrophies has many different types which are due to different gene mutations. LGMD2D is caused by a mutation in the α-sarcoglycan gene.Future treatment could be had by gene therapy through recombinant adeno-associated vectors.[14] Conversely, according to a review by Straub, et al. there are several research issues that need to be targeted, the rareness of the disease, our poor understanding of the mechanism of LGMD2, and absence of patient cohorts, consequently biomarkers for individuals with LGMD2 are lacking. The review goes on to state that animal models for LGMD2 have been used to analyse therapeutic medications. Also adding that while prednisone has been used and has had positive effects on affected LGMD2 individuals there is still no evidence of its effectiveness in trials that are placebo-controlled[15] See also
References1. ^{{Cite book|url=https://books.google.com/books?id=mBGB7FOFJMoC|title=Companion to Clinical Neurology|last=Newfoundland|first=FRCP William Pryse-Phillips MD, FRCP(C) Faculty of Medicine Health Sciences Centre Memorial University of Newfoundland St John's|date=2009-05-06|publisher=Oxford University Press, USA|page=579|isbn=9780199710041|language=en}} 2. ^1 {{Cite web | url=https://ghr.nlm.nih.gov/condition/limb-girdle-muscular-dystrophy | title=Limb-girdle muscular dystrophy}} 3. ^{{Cite journal | url=https://emedicine.medscape.com/article/1170911-treatment | title=Limb-Girdle Muscular Dystrophy Treatment & Management: Medical Care, Surgical Care, Consultations| date=August 2018}} 4. ^1 2 3 {{Cite web | url=http://patient.info/doctor/limb-girdle-muscular-dystrophy | title=Limb-girdle Muscular Dystrophy | Doctor}} 5. ^1 2 3 4 5 6 {{MedlinePlusEncyclopedia|000711|Limb-girdle muscular dystrophies}} 6. ^1 {{Cite web|url=https://ghr.nlm.nih.gov/condition/limb-girdle-muscular-dystrophy|title=limb-girdle muscular dystrophy|last=Reference|first=Genetics Home|website=Genetics Home Reference|access-date=2016-04-22}} 7. ^1 2 3 {{Cite journal | url=http://emedicine.medscape.com/article/1170911-overview | title=Limb-Girdle Muscular Dystrophy: Practice Essentials, Background, Pathophysiology| date=August 2018}} 8. ^1 2 {{Cite journal|last=Narayanaswami|first=Pushpa|last2=Weiss|first2=Michael|last3=Selcen|first3=Duygu|last4=David|first4=William|last5=Raynor|first5=Elizabeth|last6=Carter|first6=Gregory|last7=Wicklund|first7=Matthew|last8=Barohn|first8=Richard J.|last9=Ensrud|first9=Erik|date=2014-10-14|title=Evidence-based guideline summary: Diagnosis and treatment of limb-girdle and distal dystrophies|journal=Neurology|volume=83|issue=16|pages=1453–1463|doi=10.1212/WNL.0000000000000892|issn=0028-3878|pmc=4206155|pmid=25313375}} 9. ^1 2 3 {{Cite book|url=https://www.ncbi.nlm.nih.gov/books/NBK1408/|title=Limb-Girdle Muscular Dystrophy Overview|last=Pegoraro|first=Elena|last2=Hoffman|first2=Eric P.|date=1993-01-01|publisher=University of Washington, Seattle|editor-last=Pagon|editor-first=Roberta A.|location=Seattle (WA)|pmid=20301582|editor-last2=Adam|editor-first2=Margaret P.|editor-last3=Ardinger|editor-first3=Holly H.|editor-last4=Wallace|editor-first4=Stephanie E.|editor-last5=Amemiya|editor-first5=Anne|editor-last6=Bean|editor-first6=Lora JH|editor-last7=Bird|editor-first7=Thomas D.|editor-last8=Fong|editor-first8=Chin-To|editor-last9=Mefford|editor-first9=Heather C.}}update 2012 10. ^{{cite journal|last1=Aoki|first1=Masashi|title=Dysferlinopathy|journal=GeneReviews(®)|date=March 5, 2015|url=https://www.ncbi.nlm.nih.gov/books/NBK1303/}} 11. ^{{cite journal| pmc=4478773 | pmid=26155063 | volume=34 | issue=1 | title=Muscle exercise in limb girdle muscular dystrophies: pitfall and advantages | year=2015 | author=Siciliano G, Simoncini C, Giannotti S, Zampa V, Angelini C, Ricci G | journal=Acta Myol | pages=3–8}} 12. ^{{Cite web|url=http://www.niams.nih.gov/News_and_Events/Spotlight_on_Research/2011/limb_girdle_md.asp|title=Limb-Girdle Muscular Dystrophy|last=Liaison|first=Melanie Martinez, Office of Communications and Public|website=www.niams.nih.gov|language=en|access-date=2016-04-22}} 13. ^{{Cite web|url=https://ghr.nlm.nih.gov/primer/therapy/procedures|title=How does gene therapy work?|last=Reference|first=Genetics Home|website=Genetics Home Reference|access-date=2016-04-23}} 14. ^{{Cite journal|last=Bengtsson|first=Niclas E.|last2=Seto|first2=Jane T.|last3=Hall|first3=John K.|last4=Chamberlain|first4=Jeffrey S.|last5=Odom|first5=Guy L.|date=2016-04-15|title=Progress and prospects of gene therapy clinical trials for the muscular dystrophies|url=http://hmg.oxfordjournals.org/content/25/R1/R9|journal=Human Molecular Genetics|language=en|volume=25|issue=R1|pages=R9–R17|doi=10.1093/hmg/ddv420|issn=0964-6906|pmc=4802376|pmid=26450518}} 15. ^{{Cite journal|last=Straub|first=Volker|last2=Bertoli|first2=Marta|date=2016-02-01|title=Where do we stand in trial readiness for autosomal recessive limb girdle muscular dystrophies?|url=http://www.sciencedirect.com/science/article/pii/S0960896615300468|journal=Neuromuscular Disorders|volume=26|issue=2|pages=111–125|doi=10.1016/j.nmd.2015.11.012|pmid=26810373}}{{Subscription or libraries|sentence|via=ScienceDirect}} Further reading
External links{{Medical resources| DiseasesDB =32189 | ICD10 = {{ICD10|G|71|0|g|70}} | ICD9 = {{ICD9|359.1}} | ICDO = | MedlinePlus = 000711 | eMedicineSubj = neuro | eMedicineTopic = 189 | MeshID = D049288 | OMIM = 159000 | OMIM_mult = {{OMIM2|159001}} {{OMIM2|607801}} {{OMIM2|603511}} {{OMIM2|602067}} {{OMIM2|608423}} {{OMIM2|609115}} {{OMIM2|253600}} {{OMIM2|253601}} {{OMIM2|253700}} {{OMIM2|608099}} {{OMIM2|604286}} {{OMIM2|601287}} {{OMIM2|601954}} {{OMIM2|254110}} {{OMIM2|607155}} {{OMIM2|608807}} {{OMIM2|609308}} {{OMIM2|611307}} {{OMIM2|611588}} {{OMIM2|607439}} {{OMIM2|606822}} | GeneReviewsNBK = NBK1408 | GeneReviewsName = Limb-Girdle Muscular Dystrophy Overview }}{{Muscular Dystrophy}}{{Diseases of myoneural junction and muscle}}{{Inherited disorders of trafficking}}{{Cytoskeletal defects}}{{Other cell membrane protein disorders}} 1 : Muscular dystrophy |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。