请输入您要查询的百科知识:

 

词条 List of fusion experiments
释义

  1. Magnetic confinement

      Toroidal machine    Tokamak    Stellarator    Reversed field pinch (RFP)    Magnetic mirror    Spheromak    Field-Reversed Configuration (FRC)    Open field lines    Plasma pinch    Levitated Dipole  

  2. Inertial confinement

      Laser-driven   Current or under construction experimental facilities  Solid state lasers  Gas lasers  Dismantled experimental facilities  Solid-state lasers  Gas lasers  Z-Pinch 

  3. Inertial electrostatic confinement

  4. Magnetized target fusion

  5. References

{{external links|date=April 2018}}{{citation style|date=April 2018}}

Experiments directed toward developing fusion power are invariably done with dedicated machines which can be classified according to the principles they use to confine the plasma fuel and keep it hot.

The major division is between magnetic confinement and inertial confinement. In magnetic confinement, the tendency of the hot plasma to expand is counteracted by the Lorentz force between currents in the plasma and magnetic fields produced by external coils. The particle densities tend to be in the range of {{val|e=18}} to {{val|e=22|u=m−3}} and the linear dimensions in the range of {{val|0.1|to|10|u=m}}. The particle and energy confinement times may range from under a millisecond to over a second, but the configuration itself is often maintained through input of particles, energy, and current for times that are hundreds or thousands of times longer. Some concepts are capable of maintaining a plasma indefinitely.

In contrast, with inertial confinement, there is nothing to counteract the expansion of the plasma. The confinement time is simply the time it takes the plasma pressure to overcome the inertia of the particles, hence the name. The densities tend to be in the range of {{val|e=31}} to {{val|e=33|u=m−3}} and the plasma radius in the range of 1 to 100 micrometers. These conditions are obtained by irradiating a millimeter-sized solid pellet with a nanosecond laser or ion pulse. The outer layer of the pellet is ablated, providing a reaction force that compresses the central 10% of the fuel by a factor of 10 or 20 to 103 or {{val|e=4}} times solid density. These microplasmas disperse in a time measured in nanoseconds. For a reactor, a repetition rate of several per second will be needed.

Magnetic confinement

Within the field of magnetic confinement experiments, there is a basic division between toroidal and open magnetic field topologies. Generally speaking, it is easier to contain a plasma in the direction perpendicular to the field than parallel to it. Parallel confinement can be solved either by bending the field lines back on themselves into circles or, more commonly, toroidal surfaces, or by constricting the bundle of field lines at both ends, which causes some of the particles to be reflected by the mirror effect. The toroidal geometries can be further subdivided according to whether the machine itself has a toroidal geometry, i.e., a solid core through the center of the plasma. The alternative is to dispense with a solid core and rely on currents in the plasma to produce the toroidal field.

Mirror machines have advantages in a simpler geometry and a better potential for direct conversion of particle energy to electricity. They generally require higher magnetic fields than toroidal machines, but the biggest problem has turned out to be confinement. For good confinement there must be more particles moving perpendicular to the field than there are moving parallel to the field. Such a non-Maxwellian velocity distribution is, however, very difficult to maintain and energetically costly.

The mirrors' advantage of simple machine geometry is maintained in machines which produce compact toroids, but there are potential disadvantages for stability in not having a central conductor and there is generally less possibility to control (and thereby optimize) the magnetic geometry. Compact toroid concepts are generally less well developed than those of toroidal machines. While this does not necessarily mean that they cannot work better than mainstream concepts, the uncertainty involved is much greater.

Somewhat in a class by itself is the Z-pinch, which has circular field lines. This was one of the first concepts tried, but it did not prove very successful. Furthermore, there was never a convincing concept for turning the pulsed machine requiring electrodes into a practical reactor.

The dense plasma focus is a controversial and "non-mainstream" device that relies on currents in the plasma to produce a toroid. It is a pulsed device that depends on a plasma that is not in equilibrium and has the potential for direct conversion of particle energy to electricity. Experiments are ongoing to test relatively new theories to determine if the device has a future.

Toroidal machine

Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator. The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics. Stellarators typically have a periodicity, e.g. a fivefold rotational symmetry. The RFP, despite some theoretical advantages such as a low magnetic field at the coils, has not proven very successful.

Tokamak

Device Name Status Construction Operation Location Organisation Major/Minor RadiusB-fieldPlasma current Purpose Image
T-1 Shut down}} ? 1957-1959 SOV}} Kurchatov Institute 0.625 m/0.13 m 1 T 0.04 MA First tokamak
T-3 Shut down}} ? 1962-? SOV}} Kurchatov Institute 1 m/0.12 m 2.5 T 0.06 MA
ST (Symmetric Tokamak) Shut down}} Model C 1970-1974 USA}} Princeton Plasma Physics Laboratory 1.09 m/0.13 m 5.0 T 0.13 MA First American tokamak, converted from Model C stellarator
ORMAK (Oak Ridge tokaMAK) Shut down}} 1971-1976 USA}} Oak Ridge National Laboratory 0.8 m/0.23 m 2.5 T 0.34 MA First to achieve 20 MK plasma temperature
ATC (Adiabatic Toroidal Compressor) Shut down}} 1971-1972 1972-1976 USA}} Princeton Plasma Physics Laboratory 0.88 m/0.11 m 2 T 0.05 MA Demonstrate compressional plasma heating
TFR (Tokamak de Fontenay-aux-Roses) Shut down}} 1973-1984 FRA}} CEA 1 m/0.2 m 6 T 0.49
T-10 (Tokamak-10) Shut down}} 1975-? SOV}} Kurchatov Institute 1.50 m/0.36 m 4 T 0.6 MA Largest tokamak of its time
PLT (Princeton Large Torus) Shut down}} 1975-1986 USA}} Princeton Plasma Physics Laboratory 1.32 m/0.4 m 4 T 0.7 MA First to achieve 1 MA plasma current
ASDEX (Axially Symmetric Divertor Experiment)[1] Recycled}} →HL-2A 1980-1990 DEU}} Max-Planck-Institut für Plasmaphysik 1.65 m/0.4 m 2.8 T 0.5 MA Discovery of the H-mode in 1982
TEXTOR (Tokamak Experiment for Technology Oriented Research)[2][3] Shut down}} 1976-1980 1981-2013 DEU}} Forschungszentrum Jülich 1.75 m/0.47 m 2.8 T 0.8 MA Study plasma-wall interactions
TFTR (Tokamak Fusion Test Reactor)[4] Shut down}} 1980-1982 1982-1997 USA}} Princeton Plasma Physics Laboratory 2.4 m/0.8 m 6 T 3 MA Attempted scientific break-even, reached record fusion power of 10.7 MW and temperature of 510 MK
JET (Joint European Torus)[5] Operational}} 1978-1983 1983- UK}} Culham Centre for Fusion Energy 2.96 m/0.96 m 4 T 7 MA Record for fusion output power 16.1 MW
Novillo[6][7] Shut down}} NOVA-II 1983-2004 MEX}} Instituto Nacional de Investigaciones Nucleares 0.23 m/0.06 m 1 T 0.01 MA Study plasma-wall interactions
JT-60 (Japan Torus-60)[8] Recycled}} →JT-60SA 1985-2010 JP}} Japan Atomic Energy Research Institute 3.4 m/1.0 m 4 T 3 MA High-beta steady-state operation, highest fusion triple product
DIII-D[9] Operational}} 1986[10] 1986- USA}} General Atomics 1.67 m/0.67 m 2.2 T 3 MA Tokamak Optimization
STOR-M (Saskatchewan Torus-Modified)[11] Operational}} 1987- CAN}} Plasma Physics Laboratory (Saskatchewan) 0.46 m/0.125 m 1 T 0.06 MA Study plasma heating and anomalous transport
T-15 Recycled}} →T-15MD 1983-1988 1988-1995 SOV}} Kurchatov Institute 2.43 m/0.7 m 3.6 T 1 MA First superconducting tokamak.
Tore Supra[12] Recycled}} →WEST 1988-2011 FRA}} Département de Recherches sur la Fusion Contrôlée 2.25 m/0.7 m 4.5 T 2 MA Large superconducting tokamak with active cooling
ADITYA (tokamak) Operational}} 1989- IND}} Institute for Plasma Research 0.75 m/0.25 m 1.2 T 0.25 MA
COMPASS (COMPact ASSembly)[13][14] Operational}} 1980- 1989- CZ}} Institute of Plasma Physics AS CR 0.56 m/0.23 m 2.1 T 0.32 MA
FTU (Frascati Tokamak Upgrade) Operational}} 1990- ITA}} ENEA 0.935 m/0.35 m 8 T 1.6 MA
START (Small Tight Aspect Ratio Tokamak)[15] Shut down}} 1990-1998 UK}} Culham Centre for Fusion Energy 0.3 m/? 0.5 T 0.31 MA First full-sized Spherical Tokamak
ASDEX Upgrade (Axially Symmetric Divertor Experiment) Operational}} 1991- DEU}} Max-Planck-Institut für Plasmaphysik 1.65 m/0.5 m 2.6 T 1.4 MA
Alcator C-Mod (Alto Campo Toro)[16] Shut down}} 1986- 1991-2016 USA}} Massachusetts Institute of Technology 0.68 m/0.22 m 8 T 2 MA record plasma pressure 2.05 bar
ISTTOK (Instituto Superior Técnico TOKamak)[17] Operational}} 1992- POR}} Instituto de Plasmas e Fusão Nuclear 0.46 m/0.085 m 2.8 T 0.01 MA
TCV (Tokamak à Configuration Variable)[18] Operational}} 1992- CH}} École Polytechnique Fédérale de Lausanne 0.88 m/0.25 m 1.43 T 1.2 MA Confinement studies
Pegasus Toroidal Experiment[19] Operational}} ? 1996- USA}} University of Wisconsin–Madison 0.45 m/0.4 m 0.18 T 0.3 MA Extremely low aspect ratio
NSTX (National Spherical Torus Experiment)[20] Operational}} 1999- USA}} Princeton Plasma Physics Laboratory 0.85 m/0.68 m 0.3 T 2 MA Study the spherical tokamak concept
ET (Electric Tokamak) Recycled}} →ETPD 1998 1999-2006 USA}} UCLA 5 m/1 m 0.25 T 0.045 Largest tokamak of its time
CDX-U (Current Drive Experiment-Upgrade) Recycled}} →LTX 2000-2005 USA}} Princeton Plasma Physics Laboratory 0.3 m/? m 0.23 T 0.03 MA Study Lithium in plasma walls
MAST (Mega-Ampere Spherical Tokamak)[21] Recycled}} →MAST-Upgrade 1997-1999 1999-2013 UK}} Culham Centre for Fusion Energy 0.9 m/0.6 m 0.55 T 1.4 MA Investigate spherical tokamak for fusion
SST-1 (Steady State Superconducting Tokamak)[22] Operational}} 2001- 2005- IND}} Institute for Plasma Research 1.1 m/0.2 m 3 T 0.22 MA Produce a 1000s elongated double null divertor plasma
EAST (Experimental Advanced Superconducting Tokamak)[23] Operational}} 2003-2006 2006- CHN}} Hefei Institutes of Physical Science 1.85 m/0.4 5m 3.5 T 0.5 MA H-Mode plasma for over 100 s at 50 MK
KSTAR (Korea Superconducting Tokamak Advanced Research)[24] Operational}} 1998-2007 2008- KOR}} National Fusion Research Institute 1.8 m/0.5 m 3.5 T 2 MA Tokamak with fully superconducting magnets
LTX (Lithium Tokamak Experiment) Operational}} 2005-2008 2008- USA}} Princeton Plasma Physics Laboratory 0.4 m/? m 0.4 T 0.4 MA Study Lithium in plasma walls
QUEST (Spherical Tokamak)[25] Operational}} 2008- JP}} Kyushu University 0.68 m/0.4 m 0.25 T 0.02 MA Study steady state operation of a Spherical Tokamak
Kazakhstan Tokamak for Material testing (KTM) Operational}} 2000-2010 2010- KAZ}} National Nuclear Center of the Republic of Kazakhstan 0.86 m/0.43 m 1 T 0.75 MA Testing of wall and divertor
ST25-HTS[26] Operational}} 2012-2015 2015- UK}} Tokamak Energy Ltd 0.25 m/0.125 m 0.1 T 0.02 MA Steady state plasma
WEST (Tungsten Environment in Steady-state Tokamak) Operational}} 2013-2016 2016- FRA}} Département de Recherches sur la Fusion Contrôlée 2.5 m/0.5 m 3.7 T 1 MA Superconducting tokamak with active cooling
ST40[27] Operational}} 2017-2018 2018- UK}} Tokamak Energy Ltd 0.4 m/0.3 m 3 T 2 MA First high field spherical tokamak
JT-60SA (Japan Torus-60 super, advanced)[28] Under construction}} 2013-2020? 2020? JP}} Japan Atomic Energy Research Institute 2.96 m/1.18 m 2.25 T 5.5 MA Optimise plasma configurations for ITER and DEMO with full non-inductive steady-state operation
ITER[29] Under construction}} 2013- 2025? FRA}} ITER Council 6.2 m/2.0 m 5.3 T 15 MA ? Demonstrate feasibility of fusion on a power-plant scale with 500 MW fusion power
DTT (Divertor Tokamak Test facility)[30] Planned}} ? 2022? ITA}} ENEA 2.15 m/0.70 m 6 T ? 6 MA ? Divertor design
IGNITOR[31] Planned}}[32] ? >2024 RUS}} ENEA 1.32 m/0.47 m 13 T 11 MA ? Compact fustion reactor with self-sustained plasma and 100 MW of planned fusion power
CFETR (China Fusion Engineering Test Reactor)[33] Planned}} 2020? 2030? CHN}} Institute of Plasma Physics, Chinese Academy of Sciences 5.7 m ? 5 T ? 10 MA ? Bridge gaps between ITER and DEMO, planned fusion power 1000 MW
K-DEMO (Korean fusion demonstration tokamak reactor)[34] Planned}} 2037? KOR}} National Fusion Research Institute 6.8 m/2.1 m 7 T 12 MA ? Prototype for the development of commercial fusion reactors with around 2200 MW of fusion power
DEMO (DEMOnstration Power Station) Planned}} 2031? 2044? ? 9 m/3 m ? 6 T ? 20 MA ? Prototype for a commercial fusion reactor

Stellarator

Device Name Status Construction Operation Type Location Organisation Major/Minor Radius B-field Purpose Image
Model A Shut down}} 1952-1953 1953-? Figure-8 USA}} Princeton Plasma Physics Laboratory 0.3 m/0.02 m 0.1 T First stellarator
Model B Shut down}} 1953-1954 1954-1959 Figure-8 USA}} Princeton Plasma Physics Laboratory 0.3 m/0.02 m 5 T Development of plasma diagnostics
Model B-2 Shut down}} Figure-8 USA}} Princeton Plasma Physics Laboratory 0.3 m/0.02 m 5 T
Model B-3 Shut down}} 1958 Figure-8 USA}} Princeton Plasma Physics Laboratory 0.4 m/0.02 m 4 T
Model B-64 Shut down}} 1955 Square USA}} Princeton Plasma Physics Laboratory ? m/0.05 m 1.8 T
Model B-65 Shut down}} Racetrack USA}} Princeton Plasma Physics Laboratory
Model B-66 Shut down}}USA}} Princeton Plasma Physics Laboratory
Wendelstein 1-A Shut down}} 1960 Racetrack DEU}} Max-Planck-Institut für Plasmaphysik 0.35 m/0.02 m 2 T ℓ=3
Wendelstein 1-B Shut down}} 1960 Racetrack DEU}} Max-Planck-Institut für Plasmaphysik 0.35 m/0.02 m 2 T ℓ=2
Model C Recycled}} →ST 1957-1962 1962-1969 Racetrack USA}} Princeton Plasma Physics Laboratory 1.9 m/0.07 m 3.5 T Found large plasma losses by Bohm diffusion
L-1 Shut down}} 1963 1963-1971 RUS}} Lebedev Physical Institute 0.6 m/0.05 m 1 T
SIRIUS Shut down}} 1964-? RUS}}
TOR-1 Shut down}} 1967 1967-1973 RUS}} Lebedev Physical Institute 0.6 m/0.05 m 1 T
TOR-2 Shut down}} ? 1967-1973 RUS}} Lebedev Physical Institute 0.63 m/0.036 m 2.5 T
Wendelstein 2-A Shut down}} 1965-1968 1968-1974 Heliotron DEU}} Max-Planck-Institut für Plasmaphysik 0.5 m/0.05 m 0.6 T Good plasma confinement “Munich mystery”
Wendelstein 2-B Shut down}} ?-1970 1971-? Heliotron DEU}} Max-Planck-Institut für Plasmaphysik 0.5 m/0.055 m 1.25 T Demonstrated similar performance than tokamaks
L-2 Shut down}} ? 1975-? RUS}} Lebedev Physical Institute 1 m/0.11 m 2.0 T
WEGA Recycled}} →HIDRA 1972-1975 1975-2013 Classical stellarator DEU}} Max-Planck-Institut für Plasmaphysik 0.72 m/0.15 m 1.4 T Test lower hybrid heating
Wendelstein 7-A Shut down}} ? 1975-1985 Classical stellarator DEU}} Max-Planck-Institut für Plasmaphysik 2 m/0.1 m 3.5 T First "pure" stellarator without plasma current
Heliotron-E Shut down}} ? 1980-? Heliotron JP}} 2.2 m/0.2 m 1.9 T
Heliotron-DR Shut down}} ? 1981-? Heliotron JP}} 0.9 m/0.07 m 0.6 T
Auburn Torsatron Shut down}} ? 1984-1990 Torsatron USA}} Auburn University 0.58 m/0.14 m 0.2 T
Wendelstein 7-AS Shut down}} 1982-1988 1988-2002 Modular, advanced stellarator DEU}} Max-Planck-Institut für Plasmaphysik 2 m/0.13 m 2.6 T First H-mode in a stellarator in 1992
Compact Helical System (CHS) Shut down}} ? 1989-? Heliotron JP}} National Institute for Fusion Science 1 m/0.2 m 1.5 T
Compact Auburn Torsatron (CAT) Shut down}} ?-1990 1990-2000 Torsatron USA}} Auburn University 0.53 m/0.11 m 0.1 T Study magnetic flux surfaces
H-1NF[35] Operational}} 1992- Heliac AUS}} Research School of Physical Sciences and Engineering, Australian National University 1.0 m/0.19 m 0.5 T
TJ-K[36] Operational}} TJ-IU 1994- Torsatron DEU}} University of Stuttgart 0.60 m/0.10 m 0.5 T Teaching
TJ-II[37] Operational}} 1991- 1997- flexible Heliac ESP}} National Fusion Laboratory, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Ciemat) 1.5 m/0.28 m 1.2 T Study plasma in flexible configuration
LHD (Large Helical Device)[38] Operational}} 1990-1998 1998- Heliotron JP}} National Institute for Fusion Science 3.5 m/0.6 m 3 T Determine feasibility of a stellarator fusion reactor
HSX (Helically Symmetric Experiment) Operational}} 1999- Modular, quasi-helically symmetric USA}} University of Wisconsin–Madison 1.2 m/0.15 m 1 T investigate plasma transport
Heliotron J (Heliotron J)[39] Operational}} 2000- Heliotron JP}} Institute of Advanced Energy 1.2 m/0.1 m 1.5 T Study helical-axis heliotron configuration
Uragan-2(M)[40] ? ? ? Heliotron, Torsatron UKR}} National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT) 1.7 m/0.24 m 2.4 T ?
Uragan-3M|uk|3=Ураган-3М|lt=M}})[41] ? ? ? Torsatron UKR}} National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT) 1.0 m/0.12 m 1.3 T ?
Columbia Non-neutral Torus (CNT) Operational}} ? 2004- Circular interlocked coils USA}} Columbia University 0.3 m/0.1 m 0.2 T Study of non-neutral plasmas
Quasi-poloidal stellarator (QPS)[42][43] Cancelled}} 2001-2007 - Modular USA}} Oak Ridge National Laboratory 0.9 m/0.33 m 1.0 T Stellarator research
NCSX (National Compact Stellarator Experiment) Cancelled}} 2004-2008 - Helias USA}} Princeton Plasma Physics Laboratory 1.4 m/0.32 m 1.7 T High-β stability
Compact Toroidal Hybrid (CTH) Operational}} ? 2007?- Torsatron USA}} Auburn University 0.75 m/0.2 m 0.7 T Hybrid stellarator/tokamak
HIDRA (Hybrid Illinois Device for Research and Applications)[44] Operational}} 2013-2014 (WEGA) 2014- ? USA}} University of Illinois at Urbana - Champaign 0.72 m/0.19 m 0.5 T Stellarator and Tokamak in one device
UST_2[45] Operational}} 2013 2014- modular three period quasi-isodynamic ESP}} Charles III University of Madrid 0.29 m/0.04 m 0.089 T 3D printed stellarator
Wendelstein 7-X[46] Operational}} 1996-2015 2015- Helias DEU}} Max-Planck-Institut für Plasmaphysik 5.5 m/0.53 m 3 T Steady-state plasma in fully optimized stellarator
SCR-1 (Stellarator of Costa Rica) Operational}} 2011-2015 2016- Modular CRI}} Instituto Tecnológico de Costa Rica 0.14 m/0.042 m 0.044 T

Reversed field pinch (RFP)

  • RFX (Reversed-Field eXperiment), Consorzio RFX, Padova, Italy[47]
  • MST (Madison Symmetric Torus), University of Wisconsin–Madison, United States[48]
  • T2R, Royal Institute of Technology, Stockholm, Sweden
  • TPE-RX, AIST, Tsukuba, Japan
  • KTX (Keda Torus eXperiment) in China (since 2015)[49]

Magnetic mirror

  • Baseball I/Baseball II Lawrence Livermore National Laboratory, Livermore CA.
  • TMX, TMX-U Lawrence Livermore National Laboratory, Livermore CA.
  • MFTF Lawrence Livermore National Laboratory, Livermore CA.
  • Gas Dynamic Trap at Budker Institute of Nuclear Physics, Akademgorodok, Russia.

Spheromak

  • Sustained Spheromak Physics Experiment

Field-Reversed Configuration (FRC)

  • C-2 Tri Alpha Energy
  • C-2U Tri Alpha Energy
  • C-3 (under construction?) Tri Alpha Energy
  • LSX University of Washington
  • IPA University of Washington
  • HF University of Washington
  • IPA- HF University of Washington

Open field lines

Plasma pinch

  • Trisops - 2 facing theta-pinch guns

Levitated Dipole

  • Levitated Dipole Experiment (LDX), MIT/Columbia University, United States[50]

Inertial confinement

{{main|Inertial confinement fusion}}

Laser-driven

Current or under construction experimental facilities

Solid state lasers
  • National Ignition Facility (NIF) at LLNL in California, US[51]
  • Laser Mégajoule of the Commissariat à l'Énergie Atomique in Bordeaux, France (under construction)[52]
  • OMEGA EL Laser at the Laboratory for Laser Energetics, Rochester, US
  • Gekko XII at the Institute for Laser Engineering in Osaka, Japan
  • ISKRA-4 and ISKRA-5 Lasers at the Russian Federal Nuclear Center VNIIEF[53]
  • Pharos laser, 2 beam 1 kJ/pulse (IR) Nd:Glass laser at the Naval Research Laboratories
  • Vulcan laser at the central Laser Facility, Rutherford Appleton Laboratory, 2.6 kJ/pulse (IR) Nd:glass laser
  • Trident laser, at LANL; 3 beams total; 2 x 400 J beams, 100 ps – 1 us; 1 beam ~100 J, 600 fs – 2 ns.
Gas lasers
  • NIKE laser at the Naval Research Laboratories, Krypton Fluoride gas laser
  • PALS, formerly the "Asterix IV", at the Academy of Sciences of the Czech Republic,[54] 1 kJ max. output iodine laser at 1.315 micrometre fundamental wavelength

Dismantled experimental facilities

Solid-state lasers
  • 4 pi laser built during the mid 1960s at Lawrence Livermore National Laboratory
  • Long path laser built at LLNL in 1972
  • The two beam Janus laser built at LLNL in 1975
  • The two beam Cyclops laser built at LLNL in 1975
  • The two beam Argus laser built at LLNL in 1976
  • The 20 beam Shiva laser built at LLNL in 1977
  • 24 beam OMEGA laser completed in 1980 at the University of Rochester's Laboratory for Laser Energetics
  • The 10 beam Nova laser (dismantled) at LLNL. (First shot taken, December 1984 – final shot taken and dismantled in 1999)
Gas lasers
  • "Single Beam System" or simply "67" after the building number it was housed in, a 1 kJ carbon dioxide laser at Los Alamos National Laboratory
  • Gemini laser, 2 beams, 2.5 kJ carbon dioxide laser at LANL
  • Helios laser, 8 beam, ~10 kJ carbon dioxide laser at LANL — Media at Wikimedia Commons
  • Antares laser at LANL. (40 kJ CO2 laser, largest ever built, production of hot electrons in target plasma due to long wavelength of laser resulted in poor laser/plasma energy coupling)
  • Aurora laser 96 beam 1.3 kJ total krypton fluoride (KrF) laser at LANL
  • Sprite laser few joules/pulse laser at the Central Laser Facility, Rutherford Appleton Laboratory

Z-Pinch

{{main|Z-Pinch}}
  • Z Pulsed Power Facility
  • ZEBRA device at the University of Nevada's Nevada Terawatt Facility[55]
  • Saturn accelerator at Sandia National Laboratory[56]
  • MAGPIE at Imperial College London
  • COBRA at Cornell University
  • PULSOTRON[57]

Inertial electrostatic confinement

{{main|Inertial electrostatic confinement}}
  • Fusor
  • Polywell

Magnetized target fusion

{{main|Magnetized target fusion}}
  • FRX-L
  • FRCHX
  • General Fusion - under development
  • LINUS project

References

1. ^ASDEX at the Max Planck Institute for Plasma Physics
2. ^{{Cite web|url=http://www.fz-juelich.de/ief/ief-4//textor_en/#|title=Forschungszentrum Jülich - Plasmaphysik (IEK-4)|last=|first=|date=|website=www.fz-juelich.de|language=de|archive-url=|archive-date=|dead-url=|access-date=}}
3. ^[https://web.archive.org/web/20161019163554/http://www.fz-juelich.de/SharedDocs/Downloads/IEK/IEK-4/DE/30years_TEXTOR_pdf.pdf?__blob=publicationFile Progress in Fusion Research - 30 Years of TEXTOR]
4. ^{{Cite web|url=https://web.archive.org/web/20110426091028/http://www.pppl.gov/projects/pages/tftr.html|title=Tokamak Fusion Test Reactor|last=|first=|date=2011-04-26|website=|archive-url=|archive-date=|dead-url=|access-date=}}
5. ^{{Cite web|url=https://web.archive.org/web/20060430205106/http://www.jet.efda.org/index.html|title=EFDA-JET, the world's largest nuclear fusion research experiment|last=|first=|date=2006-04-30|website=|archive-url=|archive-date=|dead-url=|access-date=}}
6. ^{{Cite web|url=https://web.archive.org/web/20091125165554/http://www.inin.mx/paraconocer/fusionnuclear.cfm|title=:::. Instituto Nacional de Investigaciones Nucleares {{!}} Fusión nuclear .|last=|first=|date=2009-11-25|website=|archive-url=|archive-date=|dead-url=|access-date=}}
7. ^{{Cite web|url=http://www.tokamak.info/|title=All-the-Worlds-Tokamaks|last=|first=|date=|website=www.tokamak.info|archive-url=|archive-date=|dead-url=|access-date=}}
8. ^{{Cite journal|url=https://web.archive.org/web/20061002101524/http://www-jt60.naka.jaea.go.jp/english/jt60/index.html|title=JT-60 Project |journal=Fusion Technology 1978 |volume=2 |pages=1079 |date=2006-10-02|archive-url=|archive-date=|dead-url=|access-date=|bibcode=1979fute.conf.1079Y |last1=Yoshikawa |first1=M. }}
9. ^{{Cite web|url=https://fusion.gat.com/global/diii-d/home|title=diii-d:home [MFE: DIII-D and Theory]|website=fusion.gat.com|language=en|access-date=2018-09-04}}
10. ^{{Cite web|url=https://science.energy.gov/fes/facilities/user-facilities/diii-d/|title=DIII-D National Fusion Facility (DIII-D) {{!}} U.S. DOE Office of Science (SC)|website=science.energy.gov|language=en-us|access-date=2018-09-04}}
11. ^{{Cite web|url=https://web.archive.org/web/20110706211727/http://plasma.usask.ca/storm/index.php|title=U of S|last=|first=|date=2011-07-06|website=|archive-url=|archive-date=|dead-url=|access-date=}}
12. ^{{Cite web|url=http://www-fusion-magnetique.cea.fr/gb/cea/ts/ts.htm|title=Tore Supra|website=www-fusion-magnetique.cea.fr|access-date=2018-09-04}}
13. ^{{Cite web|url=https://web.archive.org/web/20140512214251/http://www.ipp.cas.cz/Tokamak/index?m=comp|title=Wayback Machine|last=|first=|date=2014-05-12|website=|archive-url=|archive-date=|dead-url=|access-date=}}
14. ^{{Cite web|url=https://web.archive.org/web/20131025051208/http://www.ipp.cas.cz/Tokamak/euratom/index.php/en/compass-general-information|title=COMPASS - General information|last=|first=|date=2013-10-25|website=|archive-url=|archive-date=|dead-url=|access-date=}}
15. ^{{Cite web|url=https://web.archive.org/web/20060424061102/http://www.fusion.org.uk/culham/start.htm|title=Wayback Machine|last=|first=|date=2006-04-24|website=|archive-url=|archive-date=|dead-url=|access-date=}}
16. ^{{Cite web|url=https://web.archive.org/web/20150709210155/http://www.psfc.mit.edu/research/alcator/|title=MIT Plasma Science & Fusion Center: research>alcator>|last=|first=|date=2015-07-09|website=|archive-url=|archive-date=|dead-url=|access-date=}}
17. ^{{Cite web|url=http://www.cfn.ist.utl.pt/eng/Prj_Tokamak_main_1.html#intro|title=Centro de Fusão Nuclear|last=|first=|date=|website=www.cfn.ist.utl.pt|archive-url=|archive-date=|dead-url=|access-date=}}
18. ^{{Cite web|url=http://crppwww.epfl.ch/tcv/|title=EPFL|last=|first=|date=|website=crppwww.epfl.ch|archive-url=|archive-date=|dead-url=|access-date=}}
19. ^{{Cite web|url=http://pegasus.ep.wisc.edu|title=Pegasus Toroidal Experiment|last=|first=|date=|website=pegasus.ep.wisc.edu|language=en|archive-url=|archive-date=|dead-url=|access-date=}}
20. ^{{Cite web|url=https://nstx-u.pppl.gov/|title=NSTX-U|website=nstx-u.pppl.gov|access-date=2018-09-04}}
21. ^{{Cite web|url=https://web.archive.org/web/20060421081115/http://www.fusion.org.uk/mast/index.html|title=MAST - the Spherical Tokamak at UKAEA Culham|last=|first=|date=2006-04-21|website=|archive-url=|archive-date=|dead-url=|access-date=}}
22. ^{{Cite web|url=https://web.archive.org/web/20140620232825/http://www.ipr.res.in/sst1/SST-1.html|title=The SST-1 Tokamak Page|last=|first=|date=2014-06-20|website=|archive-url=|archive-date=|dead-url=|access-date=}}
23. ^{{Cite web|url=http://english.hf.cas.cn/ic/ip/east/|title=EAST (HT-7U Super conducting Tokamak)----Hefei Institutes of Physical Science, The Chinese Academy of Sciences|last=|first=|date=|website=english.hf.cas.cn|archive-url=|archive-date=|dead-url=|access-date=}}
24. ^{{Cite web|url=https://web.archive.org/web/20080530221257/http://www.nfri.re.kr/|title=Wayback Machine|last=|first=|date=2008-05-30|website=|archive-url=|archive-date=|dead-url=|access-date=}}
25. ^{{Cite web|url=https://web.archive.org/web/20131110043518/http://www.triam.kyushu-u.ac.jp/QUEST_HP/quest_e.html|title=Wayback Machine|last=|first=|date=2013-11-10|website=|archive-url=|archive-date=|dead-url=|access-date=}}
26. ^{{cite web | url=https://www.tokamakenergy.co.uk/mission/st25/ | title=ST25 » Tokamak Energy}}
27. ^{{cite web | url=https://www.tokamakenergy.co.uk/st40/ | title=ST40 » Tokamak Energy}}
28. ^{{Cite web|url=http://www.jt60sa.org/b/index_nav_1.htm?n1/introduction.htm|title=The JT-60SA project}}
29. ^{{Cite news|url=http://www.iter.org/|title=ITER - the way to new energy|last=|first=|date=|work=ITER|access-date=|archive-url=|archive-date=|dead-url=|language=en}}
30. ^{{Cite web|url=http://www.fsn-fusphy.enea.it/DTT/ |title=The DTT Project}}
31. ^{{Cite web|url=http://www.frascati.enea.it/ignitor/|title=Ignited plasma in Tokamaks - The IGNITOR project|last=|first=|date=|website=www.frascati.enea.it|archive-url=|archive-date=|dead-url=|access-date=}}
32. ^[https://indico.desy.de/indico/event/18319/ The Russian-Italian IGNITOR Tokamak Project: Design and status of implementation (2017)]
33. ^{{Cite web|url=http://www-naweb.iaea.org/napc/physics/meetings/TM45256/talks/Gao.pdf|title=Update on CFETR Concept Design|last=Gao|first=X.|date=2013-12-17|website=www-naweb.iaea.org|archive-url=|archive-date=|dead-url=|access-date=}}
34. ^{{Cite journal|last=Kim|first=K.|last2=Im|first2=K.|last3=Kim|first3=H. C.|last4=Oh|first4=S.|last5=Park|first5=J. S.|last6=Kwon|first6=S.|last7=Lee|first7=Y. S.|last8=Yeom|first8=J. H.|last9=Lee|first9=C.|date=2015|title=Design concept of K-DEMO for near-term implementation|url=http://stacks.iop.org/0029-5515/55/i=5/a=053027|journal=Nuclear Fusion|language=en|volume=55|issue=5|pages=053027|doi=10.1088/0029-5515/55/5/053027|issn=0029-5515|bibcode=2015NucFu..55e3027K}}
35. ^{{Cite web|url=http://prl.anu.edu.au/H-1NF|title=Plasma Research Laboratory - PRL - ANU|last=Department|first=Head of|last2=prl@physics.anu.edu.au|date=|website=prl.anu.edu.au|language=en|archive-url=|archive-date=|dead-url=|access-date=}}
36. ^{{Cite web|url=http://fusionwiki.ciemat.es/wiki/TJ-K|title=TJ-K - FusionWiki|last=|first=|date=|website=fusionwiki.ciemat.es|language=en|archive-url=|archive-date=|dead-url=|access-date=}}
37. ^{{Cite web|url=http://www.ciemat.es|title=Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas|last=CIEMAT|date=|website=www.ciemat.es|language=es|archive-url=|archive-date=|dead-url=|access-date=}}
38. ^{{Cite web|url=http://www.lhd.nifs.ac.jp/en/home/lhd.html|title=Large Helical Device Project|last=|first=|date=|website=www.lhd.nifs.ac.jp|archive-url=|archive-date=|dead-url=|access-date=}}
39. ^{{Cite web|url=http://www.iae.kyoto-u.ac.jp/en/joint/heliotron-j.html|title=Heliotron J Project|last=|first=|date=|website=http://www.iae.kyoto-u.ac.jp/en/joint/heliotron-j.html|archive-url=|archive-date=|dead-url=|access-date=}}
40. ^{{Cite web|url=http://www.kipt.kharkov.ua/en/bhr.html|title=History {{!}} ННЦ ХФТИ|last=|first=|date=|website=www.kipt.kharkov.ua|archive-url=|archive-date=|dead-url=|access-date=}}
41. ^{{Cite web|url=http://www.kipt.kharkov.ua/en/bhr.html|title=History {{!}} ННЦ ХФТИ|last=|first=|date=|website=www.kipt.kharkov.ua|archive-url=|archive-date=|dead-url=|access-date=}}
42. ^{{cite web | url=http://web.utk.edu/~qps/ | title=QPS Home Page}}
43. ^[https://web.archive.org/web/20041019073850/http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf]
44. ^{{Cite web|url=http://cpmi.illinois.edu/2016/04/26/hidra-hybrid-illinois-device-for-research-and-applications/|title=HIDRA – Hybrid Illinois Device for Research and Applications {{!}} CPMI - Illinois|last=|first=|date=|website=cpmi.illinois.edu|language=en-US|archive-url=|archive-date=|dead-url=|access-date=}}
45. ^UST_2 at Vying Fusion Energy
46. ^{{Cite web|url=http://www.ipp.mpg.de/w7x|title=Wendelstein 7-X|website=www.ipp.mpg.de/w7x|archive-url=|archive-date=|dead-url=|access-date=}}
47. ^{{Cite web|url=http://www.igi.cnr.it/|title=CONSORZIO RFX - Ricerca Formazione Innovazione|last=|first=|date=|website=www.igi.cnr.it|archive-url=|archive-date=|dead-url=|access-date=}}
48. ^{{Cite web|url=http://plasma.physics.wisc.edu/viewpage.php?id=mst|title=MST - UW Plasma Physics|last=Hartog|first=Peter Den|date=|website=plasma.physics.wisc.edu|archive-url=|archive-date=|dead-url=|access-date=}}
49. ^{{cite journal|last1=Liu|first1=Wandong|last2=et|first2=al.|title=Overview of Keda Torus eXperiment initial results|journal=Nuclear Fusion|volume=57|issue=11|year=2017|pages=116038|issn=0029-5515|doi=10.1088/1741-4326/aa7f21}}
50. ^{{Cite web|url=https://web.archive.org/web/20040823034735/http://www.psfc.mit.edu/ldx/|title=Levitated Dipole Experiment|last=|first=|date=2004-08-23|website=|archive-url=|archive-date=|dead-url=|access-date=}}
51. ^{{Cite web|url=http://www.llnl.gov/nif/|title=Lasers, Photonics, and Fusion Science: Science and Technology on a Mission|last=|first=|date=|website=www.llnl.gov|language=en|archive-url=|archive-date=|dead-url=|access-date=}}
52. ^{{Cite web|url=http://www-lmj.cea.fr/|title=CEA - Laser Mégajoule|last=|first=|date=|website=www-lmj.cea.fr|archive-url=|archive-date=|dead-url=|access-date=}}
53. ^{{Cite web|url=https://web.archive.org/web/20050406140306/http://www.vniief.ru/science/laserphysics_1_e.html|title=RFNC-VNIIEF - Science - Laser physics|last=|first=|date=2005-04-06|website=|archive-url=|archive-date=|dead-url=|access-date=}}
54. ^{{Cite news|url=https://archive.is/20010627131051/http://www.pals.cas.cz/pals/pae102la.htm|title=PALS, Laser|last=|first=|date=2001-06-27|work=archive.is|access-date=|archive-url=|archive-date=|dead-url=}}
55. ^{{Cite news|url=https://archive.is/20000919130352/http://physics.unr.edu/facility/ntf/index.html|title=University of Nevada, Reno. Nevada Terawatt Facility|last=|first=|date=2000-09-19|work=archive.is|access-date=|archive-url=|archive-date=|dead-url=}}
56. ^{{Cite web|url=http://www.sandia.gov/capabilities/pulsed-power/facilities/saturn.html|title=Sandia National Laboratories: National Security Programs|last=|first=|date=|website=www.sandia.gov|language=en|archive-url=|archive-date=|dead-url=|access-date=}}
57. ^{{Cite web|url=http://pulsotron.org|title=PULSOTRON|last=|first=|date=|website=pulsotron.org|archive-url=|archive-date=|dead-url=|access-date=}}
{{Fusion power}}

1 : Fusion power

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/22 14:18:10