释义 |
- Function
- Clinical significance
- Interactions
- References
- Further reading
{{technical|date=August 2012}}{{Infobox_gene}}N-ethylmaleimide-sensitive factor Attachment Protein Alpha, also known as SNAP-α, is a protein that is involved in the intra-cellular trafficking and fusing of vesicles to target membranes in cells.[1] Function The 'SNARE hypothesis' is a model explaining the process of docking and fusion of vesicles to their target membranes. According to this model, membrane proteins from the vesicle (v-SNAREs) and proteins from the target membrane (t-SNAREs) govern the specificity of vesicle targeting and docking through mutual recognition. Once the 2 classes of SNAREs bind to each other, they form a complex that recruits the general elements of the fusion apparatus, namely NSF (N-ethylmaleimide-sensitive factor) and SNAPs (soluble NSF-attachment proteins), to the site of membrane fusion, thereby forming the 20S fusion complex. Alpha- and gamma-SNAP are found in a wide range of tissues and act synergistically in intra-Golgi transport. The sequence of the predicted 295-amino acid human protein encoded by NAPA shares 37%, 60%, and 67% identity with the sequences of yeast, Drosophila, and squid alpha-SNAP, respectively. Platelets contain some of the same proteins, including NSF, p115/TAP, alpha-SNAP (this protein), gamma-SNAP, and the t-SNAREs syntaxin-2 and syntaxin-4, that are used in many vesicular transport processes in other cell types. Platelet exocytosis uses a molecular mechanism similar to that used by other secretory cells, such as neurons, although the proteins used by the platelet and their modes of regulation may be quite different.{{Citation needed|date=March 2015}} Clinical significance NAPA is abnormally expressed in fetuses of both IVF and ICSI, which may contribute to the increased risk of birth defects in these methods of assisted reproductive technology, ART.[2] Interactions NAPA has been shown to interact with: - NSF,[3][3]
- SNAP23,[5]
- STX1A,[4][5]
- STX4,[6]
- STX5.[6][7]
- ORAI1, STIM1.[8]
References 1. ^{{cite journal |pmid=2111733 | volume=61 | issue=4 | title=SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast | year=1990 | journal=Cell | pages=709–21 | doi=10.1016/0092-8674(90)90482-t | vauthors=Clary DO, Griff IC, Rothman JE}} 2. ^{{cite journal | vauthors = Zhang Y, Zhang YL, Feng C, Wu YT, Liu AX, Sheng JZ, Cai J, Huang HF | title = Comparative proteomic analysis of human placenta derived from assisted reproductive technology | journal = Proteomics | volume = 8 | issue = 20 | pages = 4344–56 | date = September 2008 | pmid = 18792929 | doi = 10.1002/pmic.200800294 | url = }} 3. ^{{cite journal | vauthors = Barnard RJ, Morgan A, Burgoyne RD | title = Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis | journal = J. Cell Biol. | volume = 139 | issue = 4 | pages = 875–83 | date = Nov 1997 | pmid = 9362506 | pmc = 2139964 | doi = 10.1083/jcb.139.4.875}} 4. ^1 {{cite journal | vauthors = Hanson PI, Otto H, Barton N, Jahn R | title = The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin | journal = J. Biol. Chem. | volume = 270 | issue = 28 | pages = 16955–61 | date = Jul 1995 | pmid = 7622514 | doi = 10.1074/jbc.270.28.16955}} 5. ^{{cite journal | vauthors = McMahon HT, Missler M, Li C, Südhof TC | title = Complexins: cytosolic proteins that regulate SNAP receptor function | journal = Cell | volume = 83 | issue = 1 | pages = 111–9 | date = Oct 1995 | pmid = 7553862 | doi = 10.1016/0092-8674(95)90239-2}} 6. ^1 2 {{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8 | date = Oct 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }} 7. ^{{cite journal | vauthors = Rabouille C, Kondo H, Newman R, Hui N, Freemont P, Warren G | title = Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro | journal = Cell | volume = 92 | issue = 5 | pages = 603–10 | date = Mar 1998 | pmid = 9506515 | doi = 10.1016/s0092-8674(00)81128-9}} 8. ^{{cite journal | vauthors = Miao Y, Miner C, Zhang L, Hanson PI, Dani A, Vig M | title = An essential and NSF independent role for α-SNAP in store-operated calcium entry | journal =eLife | date = July 2013 | pmid = 23878724 | doi = 10.7554/eLife.00802 | volume=2 | pmc=3713520 | pages=e00802}}
Further reading {{Refbegin|30em}}- {{cite journal | vauthors = Wilson DW, Whiteheart SW, Wiedmann M, Brunner M, Rothman JE | title = A multisubunit particle implicated in membrane fusion | journal = J. Cell Biol. | volume = 117 | issue = 3 | pages = 531–8 | year = 1992 | pmid = 1315316 | pmc = 2289450 | doi = 10.1083/jcb.117.3.531 }}
- {{cite journal | vauthors = Whiteheart SW, Brunner M, Wilson DW, Wiedmann M, Rothman JE | title = Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) bind to a multi-SNAP receptor complex in Golgi membranes | journal = J. Biol. Chem. | volume = 267 | issue = 17 | pages = 12239–43 | year = 1992 | pmid = 1601890 | doi = }}
- {{cite journal | vauthors = Hanson PI, Otto H, Barton N, Jahn R | title = The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin | journal = J. Biol. Chem. | volume = 270 | issue = 28 | pages = 16955–61 | year = 1995 | pmid = 7622514 | doi = 10.1074/jbc.270.28.16955 }}
- {{cite journal | vauthors = Whiteheart SW, Griff IC, Brunner M, Clary DO, Mayer T, Buhrow SA, Rothman JE | title = SNAP family of NSF attachment proteins includes a brain-specific isoform | journal = Nature | volume = 362 | issue = 6418 | pages = 353–5 | year = 1993 | pmid = 8455721 | doi = 10.1038/362353a0 }}
- {{cite journal | vauthors = Timmers KI, Clark AE, Omatsu-Kanbe M, Whiteheart SW, Bennett MK, Holman GD, Cushman SW | title = Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein | journal = Biochem. J. | volume = 320 | issue = Pt 2 | pages = 429–36 | year = 1997 | pmid = 8973549 | pmc = 1217948 | doi = 10.1042/bj3200429}}
- {{cite journal | vauthors = Lemons PP, Chen D, Bernstein AM, Bennett MK, Whiteheart SW | title = Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery | journal = Blood | volume = 90 | issue = 4 | pages = 1490–500 | year = 1997 | pmid = 9269766 | doi = }}
- {{cite journal | vauthors = Subramaniam VN, Loh E, Hong W | title = N-Ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment proteins (SNAP) mediate dissociation of GS28-syntaxin 5 Golgi SNAP receptors (SNARE) complex | journal = J. Biol. Chem. | volume = 272 | issue = 41 | pages = 25441–4 | year = 1997 | pmid = 9325254 | doi = 10.1074/jbc.272.41.25441 }}
- {{cite journal | vauthors = Lowe SL, Peter F, Subramaniam VN, Wong SH, Hong W | title = A SNARE involved in protein transport through the Golgi apparatus | journal = Nature | volume = 389 | issue = 6653 | pages = 881–4 | year = 1997 | pmid = 9349823 | doi = 10.1038/39923 }}
- {{cite journal | vauthors = Barnard RJ, Morgan A, Burgoyne RD | title = Stimulation of NSF ATPase Activity by α-SNAP Is Required for SNARE Complex Disassembly and Exocytosis | journal = J. Cell Biol. | volume = 139 | issue = 4 | pages = 875–83 | year = 1997 | pmid = 9362506 | pmc = 2139964 | doi = 10.1083/jcb.139.4.875 }}
- {{cite journal | vauthors = Wong SH, Xu Y, Zhang T, Hong W | title = Syntaxin 7, a novel syntaxin member associated with the early endosomal compartment | journal = J. Biol. Chem. | volume = 273 | issue = 1 | pages = 375–80 | year = 1998 | pmid = 9417091 | doi = 10.1074/jbc.273.1.375 }}
- {{cite journal | vauthors = Tang BL, Tan AE, Lim LK, Lee SS, Low DY, Hong W | title = Syntaxin 12, a member of the syntaxin family localized to the endosome | journal = J. Biol. Chem. | volume = 273 | issue = 12 | pages = 6944–50 | year = 1998 | pmid = 9507000 | doi = 10.1074/jbc.273.12.6944 }}
- {{cite journal | vauthors = Wong SH, Zhang T, Xu Y, Subramaniam VN, Griffiths G, Hong W | title = Endobrevin, a Novel Synaptobrevin/VAMP-Like Protein Preferentially Associated with the Early Endosome | journal = Mol. Biol. Cell | volume = 9 | issue = 6 | pages = 1549–63 | year = 1998 | pmid = 9614193 | pmc = 25382 | doi = 10.1091/mbc.9.6.1549 }}
- {{cite journal | vauthors = Osten P, Srivastava S, Inman GJ, Vilim FS, Khatri L, Lee LM, States BA, Einheber S, Milner TA, Hanson PI, Ziff EB | title = The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs | journal = Neuron | volume = 21 | issue = 1 | pages = 99–110 | year = 1998 | pmid = 9697855 | doi = 10.1016/S0896-6273(00)80518-8 }}
- {{cite journal | vauthors = Prekeris R, Klumperman J, Chen YA, Scheller RH | title = Syntaxin 13 Mediates Cycling of Plasma Membrane Proteins via Tubulovesicular Recycling Endosomes | journal = J. Cell Biol. | volume = 143 | issue = 4 | pages = 957–71 | year = 1998 | pmid = 9817754 | pmc = 2132958 | doi = 10.1083/jcb.143.4.957 }}
- {{cite journal | vauthors = Nagamatsu S, Watanabe T, Nakamichi Y, Yamamura C, Tsuzuki K, Matsushima S | title = alpha-soluble N-ethylmaleimide-sensitive factor attachment protein is expressed in pancreatic beta cells and functions in insulin but not gamma-aminobutyric acid secretion | journal = J. Biol. Chem. | volume = 274 | issue = 12 | pages = 8053–60 | year = 1999 | pmid = 10075705 | doi = 10.1074/jbc.274.12.8053 }}
- {{cite journal | vauthors = Subramaniam VN, Loh E, Horstmann H, Habermann A, Xu Y, Coe J, Griffiths G, Hong W | title = Preferential association of syntaxin 8 with the early endosome | journal = J. Cell Sci. | volume = 113 | issue = 6 | pages = 997–1008 | year = 2000 | pmid = 10683148 | doi = }}
- {{cite journal | vauthors = Hirose H, Arasaki K, Dohmae N, Takio K, Hatsuzawa K, Nagahama M, Tani K, Yamamoto A, Tohyama M, Tagaya M | title = Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi | journal = EMBO J. | volume = 23 | issue = 6 | pages = 1267–78 | year = 2005 | pmid = 15029241 | pmc = 381410 | doi = 10.1038/sj.emboj.7600135 }}
- {{cite journal | vauthors = Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer SC, Combs C, Das S, Leenders AG, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS | title = VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx | journal = Mol. Cell | volume = 15 | issue = 4 | pages = 635–46 | year = 2004 | pmid = 15327778 | doi = 10.1016/j.molcel.2004.07.010 }}
{{Refend}} 1 : Human proteins |