请输入您要查询的百科知识:

 

词条 List of integrals of rational functions
释义

  1. Miscellaneous integrands

  2. Integrands of the form xm(a x + b)n

  3. Integrands of the form xm / (a x2 + b x + c)n

  4. Integrands of the form xm (a + b xn)p

  5. Integrands of the form (A + B x) (a + b x)m (c + d x)n (e + f x)p

  6. Integrands of the form xm (A + B xn) (a + b xn)p (c + d xn)q

  7. Integrands of the form (d + e x)m (a + b x + c x2)p when b2 − 4 a c = 0

  8. Integrands of the form (d + e x)m (A + B x) (a + b x + c x2)p

  9. Integrands of the form xm (a + b xn + c x2n)p when b2 − 4 a c = 0

  10. Integrands of the form xm (A + B xn) (a + b xn + c x2n)p

  11. References

The following is a list of integrals (antiderivative functions) of rational functions.

Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:

, and

which can then be integrated term by term.

For other types of functions, see lists of integrals.

Miscellaneous integrands

Integrands of the form xm(a x + b)n

Many of the following antiderivatives have a term of the form ln |ax + b|. Because this is undefined when x = −b / a, the most general form of the antiderivative replaces the constant of integration with a locally constant function.[1] However, it is conventional to omit this from the notation. For example,

is usually abbreviated as

where C is to be understood as notation for a locally constant function of x. This convention will be adhered to in the following.

(Cavalieri's quadrature formula)

Integrands of the form xm / (a x2 + b x + c)n

For




Integrands of the form xm (a + b xn)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.

Integrands of the form (A + B x) (a + b x)m (c + d x)n (e + f x)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, n and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form by setting B to 0.

Integrands of the form xm (A + B xn) (a + b xn)p (c + d xn)q

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, p and q toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form and by setting m and/or B to 0.

Integrands of the form (d + e x)m (a + b x + c x2)p when b2 − 4 a c = 0

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form when by setting m to 0.

Integrands of the form (d + e x)m (A + B x) (a + b x + c x2)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form and by setting m and/or B to 0.

Integrands of the form xm (a + b xn + c x2n)p when b2 − 4 a c = 0

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form when by setting m to 0.

Integrands of the form xm (A + B xn) (a + b xn + c x2n)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form and by setting m and/or B to 0.

References

1. ^"Reader Survey: log|x| + C", Tom Leinster, The n-category Café, March 19, 2012
{{Lists of integrals}}

2 : Integrals|Mathematics-related lists

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/17 15:20:34