请输入您要查询的百科知识:

 

词条 List of most massive stars
释义

  1. Uncertainties and caveats

     Rare reliable estimates  Relevance of stellar evolution  Mass limits 

  2. List of the most massive stars

  3. Black holes

  4. See also

  5. Notes

  6. References

  7. External links

{{distinguish|List of largest stars}}

This is a list of the most massive stars so far discovered, in solar masses ({{Solar mass|link=y}}).

Uncertainties and caveats

Most of the masses listed below are contested and, being the subject of current research, remain under review and subject to revision. Indeed, many of the masses listed in the table below are inferred from theory, using difficult measurements of the stars’ temperatures and absolute brightnesses. All the masses listed below are uncertain: both the theory and the measurements are pushing the limits of current knowledge and technology. Either measurement or theory, or both, could be incorrect. For example, VV Cephei could be between {{Solar mass|25–40|link=y}}, or {{Solar mass|100}}, depending on which property of the star is examined.

Massive stars are rare; astronomers must look very far from the Earth to find one. All the listed stars are many thousands of light years away and that alone makes measurements difficult.

In addition to being far away, many stars of such extreme mass are surrounded by clouds of outflowing gas created by powerful stellar winds; the surrounding gas interferes with the already difficult-to-obtain measurements of stellar temperatures and brightnesses and greatly complicates the issue of estimating internal chemical compositions.[1]

Both the obscuring clouds and the great distances make it difficult to judge whether the star is just a single supermassive object or, instead, a multiple star system. A number of the "stars" listed below may actually be two or more companions orbiting too closely to distinguish, each star being massive in itself but not necessarily “supermassive”. Other combinations are possible – for example a supermassive star with one or more smaller companions or more than one giant star – but without being able to see inside the surrounding cloud, it is difficult to know the truth of the matter. More globally, statistics on stellar populations seem to indicate that the upper mass limit is in the 100–200 solar mass range.{{citation needed|date=January 2018}}

Rare reliable estimates

Eclipsing binary stars are the only stars whose masses are estimated with some confidence. However note that almost all of the masses listed in the table below were inferred by indirect methods; only a few of the masses in the table were determined using eclipsing systems.

Amongst the most reliable listed masses are those for the eclipsing binaries NGC 3603-A1, WR21a, and WR20a. Masses for all three were obtained from orbital measurements.[2] This involves measuring their radial velocities and also their light curves. The radial velocities only yield minimum values for the masses, depending on inclination, but light curves of eclipsing binaries provide the missing information: inclination of the orbit to our line of sight.

Relevance of stellar evolution

Some stars may once have been heavier than they are today. It is likely that many have suffered significant mass loss, perhaps as much as several tens of solar masses, expelled by the process of superwind, where high velocity winds are expelled from the hot photosphere into interstellar space. This process is similar to superwinds generated by Asymptotic Giant Branch (AGB) stars in form red giants or planetary nebulae. The process forms an enlarged extended envelope around the star that interacts with the nearby interstellar medium and infusing the region with elements heavier than Hydrogen or Helium.

There are also – or rather were – stars that might have appeared on the list but no longer exist as stars, or are supernova impostors; today we see only the debris.[3] The masses of the precursor stars that fueled these cataclysms can be estimated from the type of explosion and the energy released, but those masses are not listed here (see the section #Black holes below).

Mass limits

There are two related theoretical limits on how massive a star can possibly be. One is related to star formation: After about 120 {{Solar mass|link=y}} have accreted in a protostar, the combined mass should have become hot enough for its heat to drive away any further incoming matter. In effect, the protostar reaches a point where it evaporates material away as fast as it collects new material.

The other limit is based on light pressure from the core of an already-formed star: As mass increases past ~150 {{Solar mass}}, the intensity of light radiated from a Population I star's core will become sufficient for the light-pressure pushing outward to exceed the gravitational force pulling inward, and the surface material of the star will be free to float away into space.

Eddington mass limit
{{Main|Eddington luminosity}}

A limit on stellar mass arises because of light-pressure: For a sufficiently massive star the outward pressure of radiant energy generated by nuclear fusion in the star's core exceeds the inward pull of its own gravity. This effect is called the Eddington limit.

Stars of greater mass have a higher rate of core energy generation, and heavier stars' luminosities increase far out of proportion to the increase in their masses. The Eddington limit is the point, beyond which a star ought to push itself apart, or at least shed enough mass to reduce its internal energy generation to a lower, maintainable rate. The actual limit-point mass depends on how opaque the gas in the star is, and metal-rich Population I stars have lower mass limits than metal-poor Population II stars, with the hypothetical metal-free Population III stars having the highest allowed mass, somewhere around 300 {{Solar mass}}.

In theory, a more massive star could not hold itself together because of the mass loss resulting from the outflow of stellar material. In practice the theoretical Eddington Limit must be modified for high luminosity stars and the empirical Humphreys-Davidson limit is used instead.[4]

Accretion limits

Astronomers have long hypothesized that as a protostar grows to a size beyond 120 {{Solar mass|link=y}}, something drastic must happen. Although the limit can be stretched for very early Population III stars, and although the exact value is uncertain, if any stars still exist above 150–200 {{Solar mass}} they would challenge current theories of stellar evolution.

Studying the Arches cluster, which is currently the densest known cluster of stars in our galaxy, astronomers have confirmed that stars in that cluster do not occur any larger than about 150 {{Solar mass}}.

Rare ultramassive stars that exceed this limit – for example in the R136 star cluster – might be explained by the following proposal: Some of the pairs of massive stars in close orbit in young, unstable multiple-star systems must occasionally collide and merge where certain unusual circumstances hold that make a collision possible.[5]

List of the most massive stars

The following two lists show a few of the known stars with an estimated mass of 25 {{Solar mass|link=y}} or greater, including the stars of Arches cluster, Cygnus OB2 cluster, Pismis 24 cluster, and R136 cluster.

The first list gives stars that are estimated to be 80 {{Solar mass}} or larger. The majority of stars thought to be more than 100 {{Solar mass}} are shown, but the list is incomplete.

The second list gives examples of stars 25–79 {{Solar mass}}, but is far from a complete list. Note that all O-type stars have masses greater than 15 {{Solar mass}} and catalogs of such stars (GOSS, Reed) list hundreds of cases.

In each list, the method used to determine the mass is included to give an idea of uncertainty: Binary stars being more securely determined than indirect methods such as conversion from luminosity, extrapolation from stellar atmosphere models, ... . The masses listed below are the stars’ current (evolved) mass, not their initial (formation) mass.

{{Expand list|date=January 2016}}
Legend
Stars 80 {{Solar mass>link=y}} or greater
Star name({{Solar mass>link=y, Sun = 1) Distance from earth (ly) Method used to estimate massRefs.
315163,000 Evolutionary model[6]
230163,000 Evolutionary model[6]
226165,000 Luminosity/Atmosphere model[7]
195163,000 Evolutionary model[6]
189163,000 Luminosity/Atmosphere model[8]
180163,000 Evolutionary model[6]
179163,000 Luminosity/Atmosphere model[9]
>152 ± 5124,400 Binary[10][11]
150164,000 Luminosity/Atmosphere model[12]
150157,000 Evolutionary model[6]
140?[17]
132 ± 1324,700 Luminosity/Atmosphere model[13]
130 Luminosity/Atmosphere model[14]
130?[15]
125–13525,000 Ejection in triple system[16][17]
124157,000 Evolutionary model[6]
12024,700 Eclipsing binary[13]
120 Evolutionary model[18]
113 ± 1022,500 Luminosity/Atmosphere model[13]
111–13125,000 Luminosity/Atmosphere model[19]
1105,220 Luminosity/Atmosphere model[20]
11010,500 Binary?
1107,500 Luminosity/Atmosphere model
103.626,100 Binary[21]
10316,400 Luminosity/Atmosphere model[7]
101–11925,000 Luminosity/Atmosphere model[19]
101–11925,000 Luminosity/Atmosphere model[19]
101157,000 Evolutionary model[6]
100–2007,500Luminosity/Binary[22][23] The most massive star that has a Bayer designation
10026,000 Luminosity/Atmosphere model?[24]
1004,700 Luminosity?
99?[15]
96157,000 Evolutionary model[6]
95?[15]
94?[15]
94?[15]
93163,000 Evolutionary model[6]
9224,800 Eclipsing binary[13]
91?[15]
>90 Luminosity[25]
90 Luminosity/Atmosphere model?
87 Evolutionary model[6]
86.83 Luminosity/Atmosphere model[26]
86–10225,000 Luminosity/Atmosphere model[19]
85?[15]
84
82.7 ± 5.5 Eclipsing binary[27]
34-69:3182?[15]
81.9 ± 5.5 Eclipsing binary[27]
81?[15]
>80 Luminosity[25]
80–97 Luminosity/Atmosphere model[19]
80 Luminosity[28]
80 Luminosity?
80?[29]
80?

A few additional examples with masses lower than 80 {{solar mass}}.

Some stars with masses 25–79 {{Solar mass>link=y}}
Star name({{Solar mass>link=y, Sun = 1) MethodRefs.
78[30]
78
78
78[31]
73|32|24}}[60]
70–82
70
70[32]
70
69[15]
69 Evolutionary model[6]
68.5
67–82
66–76
66–76
66
61
60–85
59
58.3[21]
58[33]
57[34]
O}};"|ζ Puppis (Naos)56.1[35]
56–70
56
55–69
55
55
53|-20|+40}} + {{val|54|-20|+40}} Binary[36][37]
54–65
54
54
52–63
52[38]
52
50–60
48[34]
47–57
A=47 ± 2, B=28 ± 1 Binary[73][39]
46–56
45–55[24]
45 ± 11[10][11]
45
45
45[29]
44.5[40]
44.1
44
43.1±14[60]
43–51
43
43
2 Orionis42.3
42.2±14[60]
42–49
42
B}};"|Sher 25 in NGC 360340–52
1 Orionis C40
40
40[41]
39.7|17|10}}[42]
38[43]
38
38
37.4
37.3
1 Scorpii36
35
[44]35
>34
33
(Alnitak)33
31–36
31
>30
30–80Luminosity/Binary [23]
(Alnilam)30–64.5[45]
30–35
(Regor A)30
30
30 (17–40)[46][47]
A=28.63 ± 0.3, B=28.85 ± 0.3[48]
27.5
26.9
Menkib)26–36
25[49]
25
25[50]
25

Black holes

{{Main|Black hole|List of black holes|List of most massive black holes}}Black holes are the end point evolution of massive stars. Technically they are not stars, as they no longer generate heat and light via nuclear fusion in their cores.[51]
  • Stellar black holes are objects with approximately 4–15 {{Solar mass|link=y}}.
  • Intermediate-mass black holes range from 100–10 000 {{Solar mass}}.
  • Supermassive black holes are in the range of millions or billions {{Solar mass}}.

See also

{{Portal|Star}}{{cmn|colwidth=18em|
  • Hypergiant
  • List of brightest stars
  • List of brown dwarfs
  • List of galaxies
  • List of hottest stars
  • List of largest cosmic structures
  • List of largest nebulae
  • List of largest stars
  • List of most luminous stars
  • List of most massive black holes
  • Lists of stars
  • Luminous blue variable
  • Supergiant star
  • Wolf–Rayet star

}}

Notes

{{notelist}}

References

1. ^For some methods, different determinations of chemical composition lead to different estimates of mass.
2. ^For a binary star, it is possible to measure the individual masses of the two stars by studying their orbital motions, using Kepler's laws of planetary motion.
3. ^For examples of stellar debris see hypernovae and supernova remnant.
4. ^{{cite journal |last1=Ulmer |first1=A. |last2=Fitzpatrick |first2=E. L. |doi=10.1086/306048 |title=Revisiting the modified Eddington limit for massive stars |journal=The Astrophysical Journal |volume=504 |issue=1 |pages=200–206 |year=1998 |arxiv=astro-ph/9708264 |bibcode=1998ApJ...504..200U}}
5. ^{{cite journal |doi=10.1111/j.1365-2966.2012.21672.x |title=The emergence of super-canonical stars in R136-type starburst clusters |journal=Monthly Notices of the Royal Astronomical Society |volume=426 |issue=2 |pages=1416–1426 |year=2012 |last1=Banerjee |first1=S. |last2=Kroupa |first2=P. |last3=Oh |first3=S. |bibcode=2012MNRAS.426.1416B |arxiv=1208.0826}}
6. ^10 {{cite journal |title=The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II λ1640 in young star clusters |year=2016 |bibcode=2016MNRAS.458..624C |arxiv=1603.04994 |doi=10.1093/mnras/stw273 |journal=Monthly Notices of the Royal Astronomical Society |volume=458 |issue=1 |pages=624–659 |author1=Crowther |first1=Paul A. |last2=Caballero-Nieves |first2=S. M. |last3=Bostroem |first3=K. A. |last4=Maíz Apellániz |first4=J. |last5=Schneider |first5=F. R. N. |last6=Walborn |first6=N. R. |last7=Angus |first7=C. R. |last8=Brott |first8=I. |last9=Bonanos |first9=A. |last10=de Koter |first10=A. |last11=de Mink |first11=S. E. |last12=Evans |first12=C. J. |last13=Gräfener |first13=G. |last14=Herrero |first14=A. |last15=Howarth |first15=I. D. |last16=Langer |first16=N. |last17=Lennon |first17=D. J. |last18=Puls |first18=J. |last19=Sana|first19=H. |last20=Vink |first20=J. S.}}
7. ^{{Cite journal | doi = 10.1051/0004-6361/201322696| title = The Wolf–Rayet stars in the Large Magellanic Cloud| journal = Astronomy & Astrophysics| volume = 565| pages = A27| year = 2014| last1 = Hainich | first1 = R.| last2 = Rühling | first2 = U.| last3 = Todt | first3 = H.| last4 = Oskinova | first4 = L. M.| last5 = Liermann | first5 = A.| last6 = Gräfener | first6 = G.| last7 = Foellmi | first7 = C.| last8 = Schnurr | first8 = O.| last9 = Hamann | first9 = W. -R. | arxiv = 1401.5474| bibcode = 2014A&A...565A..27H}}
8. ^{{cite journal |bibcode=2014A&A...570A..38B |title=The VLT-FLAMES Tarantula Survey. XVII. Physical and wind properties of massive stars at the top of the main sequence |journal=Astronomy & Astrophysics |volume=570 |at=A38 |author1=Bestenlehner|first1=J. M. |last2=Gräfener |first2=G. |last3=Vink |first3=J. S. |last4=Najarro |first4=F. |last5=de Koter |first5=A. |last6=Sana |first6=H. |last7=Evans |first7=C. J. |last8=Crowther |first8=P. A. |last9=Hénault-Brunet|first9=V. |last10=Herrero |first10=A. |last11=Langer |first11=N. |last12=Schneider |first12=F. R. N. |last13=Simón-Díaz |first13=S. |last14=Taylor |first14=W. D. |last15=Walborn |first15=N. R. |year=2014 |doi=10.1051/0004-6361/201423643 |arxiv=1407.1837 }}
9. ^{{cite journal |bibcode=2002ApJ...574..762P |arxiv=astro-ph/0106109 |title=A Dozen Colliding-Wind X-Ray Binaries in the Star Cluster R136 in the 30 Doradus region |journal=The Astrophysical Journal |volume=574 |issue=2 |pages=762–770 |last1=Portegies Zwart |first1=Simon F. |last2=Pooley |first2=David |last3=Lewin |first3=Walter H. G. |year=2002 |doi=10.1086/340996}}
10. ^{{Cite journal | doi = 10.1051/0004-6361:20065300| title = Early-type stars in the young open cluster IC 1805| journal = Astronomy and Astrophysics| volume = 456| issue = 3| pages = 1121–1130| year = 2006| last1 = De Becker | first1 = M.| last2 = Rauw | first2 = G.| last3 = Manfroid | first3 = J.| last4 = Eenens | first4 = P. | bibcode=2006A&A...456.1121D|arxiv = astro-ph/0606379 }}
11. ^{{cite journal|bibcode=1981PASP...93..500G|title=HD 15558 - an extremely luminous O-type binary star|journal=Publications of the Astronomical Society of the Pacific|volume=93|pages=500|author1=Garmany|first1=C. D.|last2=Massey|first2=P.|year=1981|doi=10.1086/130866}}
12. ^{{Cite journal | doi = 10.1051/0004-6361/201117043| title = The VLT-FLAMES Tarantula Survey| journal = Astronomy & Astrophysics| volume = 530| pages = L14| year = 2011| last1 = Bestenlehner | first1 = J. M.| last2 = Vink | first2 = J. S.| last3 = Gräfener | first3 = G.| last4 = Najarro | first4 = F.| last5 = Evans | first5 = C. J.| last6 = Bastian | first6 = N.| last7 = Bonanos | first7 = A. Z.| last8 = Bressert | first8 = E.| last9 = Crowther | first9 = P. A.| last10 = Doran | first10 = E.| last11 = Friedrich | first11 = K.| last12 = Hénault-Brunet | first12 = V.| last13 = Herrero | first13 = A.| last14 = De Koter | first14 = A.| last15 = Langer | first15 = N.| last16 = Lennon | first16 = D. J.| last17 = Maíz Apellániz | first17 = J.| last18 = Sana | first18 = H.| last19 = Soszynski | first19 = I.| last20 = Taylor | first20 = W. D. | bibcode=2011A&A...530L..14B|arxiv = 1105.1775 }}
13. ^{{Cite journal |last1=Crowther |first1=P. A. |last2=Schnurr |first2=O. |last3=Hirschi |first3=R. |last4=Yusof |first4=N. |last5=Parker |first5=R. J. |last6=Goodwin |first6=S. P. |last7=Kassim |first7=H. A. |year=2010 |title=The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit |journal=Monthly Notices of the Royal Astronomical Society |volume=408 |issue=2 |pages=731–751 |arxiv=1007.3284 |bibcode=2010MNRAS.408..731C |doi=10.1111/j.1365-2966.2010.17167.x }}
14. ^{{Cite journal | doi = 10.1088/2041-8205/715/2/L74| title = A Massive Runaway Star from 30 Doradus| journal = The Astrophysical Journal| volume = 715| issue = 2| pages = L74| year = 2010| last1 = Evans | first1 = C. J.| last2 = Walborn | first2 = N. R.| last3 = Crowther | first3 = P. A.| last4 = Hénault-Brunet | first4 = V.| last5 = Massa | first5 = D.| last6 = Taylor | first6 = W. D.| last7 = Howarth | first7 = I. D.| last8 = Sana | first8 = H.| last9 = Lennon | first9 = D. J.| last10 = Van Loon | first10 = J. T. | bibcode = 2010ApJ...715L..74E|arxiv = 1004.5402 }}
15. ^10 {{cite journal|bibcode=2002AJ....123.2754W|title=A New Spectral Classification System for the Earliest O Stars: Definition of Type O2|journal=The Astronomical Journal|volume=123|issue=5|pages=2754–2771|author1=Walborn|first1=Nolan R.|last2=Howarth|first2=Ian D.|last3=Lennon|first3=Daniel J.|last4=Massey|first4=Philip|last5=Oey|first5=M. S.|last6=Moffat|first6=Anthony F. J.|last7=Skalkowski|first7=Gwen|last8=Morrell|first8=Nidia I.|last9=Drissen|first9=Laurent|last10=Parker|first10=Joel Wm.|year=2002|doi=10.1086/339831}}
16. ^{{Cite journal|arxiv=1211.5926|author1=Gvaramadze|author2=Kniazev|author3=Chene|author4=Schnurr|title=Two massive stars possibly ejected from NGC 3603 via a three-body encounter|journal=Monthly Notices of the Royal Astronomical Society: Letters|volume=430|pages=L20–L24|date=2012|doi=10.1093/mnrasl/sls041|bibcode=2013MNRAS.430L..20G}}
17. ^This unusual measurement was made by assuming the star was ejected from a three-body encounter in NGC 3603. This assumption also means that the current star is the result of a merger between two original close binary components. The mass is consistent with evolutionary mass for a star with the observed parameters.
18. ^{{cite journal |author1=Massey, P. |author2=Degioia-Eastwood, K. |author3=Waterhouse, E. |doi=10.1086/318769 |title=The Progenitor Masses of Wolf-Rayet Stars and Luminous Blue Variables Determined from Cluster Turnoffs. II. Results from 12 Galactic Clusters and OB Associations|journal=The Astronomical Journal |volume=121 |issue=2 |pages=1050–1070 |date=2001 |arxiv=astro-ph/0010654 |bibcode=2001AJ....121.1050M}}
19. ^{{Cite journal | doi = 10.1051/0004-6361/201116701| title = The Eddington factor as the key to understand the winds of the most massive stars| journal = Astronomy & Astrophysics| volume = 535| pages = A56| year = 2011| last1 = Gräfener | first1 = G.| last2 = Vink | first2 = J. S.| last3 = De Koter | first3 = A.| last4 = Langer | first4 = N. | bibcode=2011A&A...535A..56G|arxiv = 1106.5361 }}
20. ^{{Cite journal | last1 = Clark | first1 = J. S. | last2 = Najarro | first2 = F. | last3 = Negueruela | first3 = I. | last4 = Ritchie | first4 = B. W. | last5 = Urbaneja | first5 = M. A. | last6 = Howarth | first6 = I. D. | doi = 10.1051/0004-6361/201117472 | title = On the nature of the galactic early-B hypergiants | journal = Astronomy & Astrophysics | volume = 541 | pages = A145 | year = 2012 | pmid = | pmc = |arxiv = 1202.3991 |bibcode = 2012A&A...541A.145C }}
21. ^{{cite journal|bibcode=2016A&A...591A..22S|title=Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries |volume=1604 |at=A22 |arxiv=1604.01022 |author1=Shenar |first1=T. |last2=Hainich |first2=R. |last3=Todt |first3=H. |last4=Sander |first4=A. |last5=Hamann |first5=W.-R. |last6=Moffat |first6=A. F. J. |last7=Eldridge |first7=J. J. |last8=Pablo |first8=H. |last9=Oskinova |first9=L. M. |last10=Richardson |first10=N. D. |year=2016 |doi=10.1051/0004-6361/201527916 |journal=Astronomy & Astrophysics}}
22. ^{{cite journal|bibcode=2015MNRAS.447.2445C|arxiv=1412.7569|title=3D radiative transfer simulations of Eta Carinae's inner colliding winds - I. Ionization structure of helium at apastron|journal=Monthly Notices of the Royal Astronomical Society|volume=447|issue=3|pages=2445–2458|author1=Clementel|first1=N.|last2=Madura|first2=T. I.|last3=Kruip|first3=C. J. H.|last4=Paardekooper|first4=J.-P.|last5=Gull|first5=T. R.|year=2015|doi=10.1093/mnras/stu2614}}
23. ^{{Cite journal | doi =10.1088/0004-637X/723/1/602 | title = Periastron Passage Triggering of the 19th Century Eruptions of Eta Carinae| journal = The Astrophysical Journal | volume = 723| issue = 1| pages = 602–611| year = 2010| last1 = Kashi | first1 = A.| last2 = Soker | first2 = N.| arxiv = 0912.1439| bibcode = 2010ApJ...723..602K}}
24. ^{{Cite journal | last1 = Barniske | first1 = A. | last2 = Oskinova | first2 = L. M. | last3 = Hamann | first3 = W. -R. | doi = 10.1051/0004-6361:200809568 | title = Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas | journal = Astronomy and Astrophysics | volume = 486 | issue = 3 | pages = 971–984 | year = 2008 | pmid = | pmc = |arxiv = 0807.2476 |bibcode = 2008A&A...486..971B }}
25. ^{{Cite journal | last1 = Sana | first1 = H. | last2 = Van Boeckel | first2 = T. | last3 = Tramper | first3 = F. | last4 = Ellerbroek | first4 = L. E. | last5 = De Koter | first5 = A. | last6 = Kaper | first6 = L. | last7 = Moffat | first7 = A. F. J. | last8 = Schnurr | first8 = O. | last9 = Schneider | first9 = F. R. N. | last10 = Gies | first10 = D. R. | title = R144 revealed as a double-lined spectroscopic binary | doi = 10.1093/mnrasl/slt029 | journal = Monthly Notices of the Royal Astronomical Society: Letters | volume = 432 | pages = L26–L30 | year = 2013 | pmid = | pmc = | bibcode = 2013MNRAS.432L..26S |arxiv = 1304.4591 }}
26. ^{{Cite journal | last1 = Repolust | first1 = T. | last2 = Puls | first2 = J. | last3 = Herrero | first3 = A. | year = 2004| title = Stellar and wind parameters of Galactic O-stars. The influence of line-blocking/blanketing| journal = Astronomy and Astrophysics | volume = 415 | issue = 1| pages = 349–376| bibcode = 2004A&A...415..349R| doi = 10.1051/0004-6361:20034594}}
27. ^{{Cite journal | doi = 10.1051/0004-6361:20042136| title = The spectrum of the very massive binary system WR?20a (WN6ha + WN6ha): Fundamental parameters and wind interactions| journal = Astronomy and Astrophysics| volume = 432| issue = 3| pages = 985–998| year = 2005| last1 = Rauw | first1 = G.| last2 = Crowther | first2 = P. A.| last3 = De Becker | first3 = M.| last4 = Gosset | first4 = E.| last5 = Nazé | first5 = Y.| last6 = Sana | first6 = H.| last7 = Van Der Hucht | first7 = K. A.| last8 = Vreux | first8 = J. -M. | last9 = Williams | first9 = P. M. | bibcode=2005A&A...432..985R| url = https://pure.uva.nl/ws/files/2178609/46516_211088y.pdf}}
28. ^{{Cite journal | doi = 10.1051/0004-6361:20042543| title = The LMC H II region N 214C and its peculiar nebular blob| journal = Astronomy and Astrophysics| volume = 436| issue = 1| pages = 117–126| year = 2005| last1 = Meynadier | first1 = F.| last2 = Heydari-Malayeri | first2 = M.| last3 = Walborn | first3 = N. R. | bibcode=2005A&A...436..117M|arxiv = astro-ph/0511439 }}
29. ^{{cite journal|doi=10.1007/978-94-010-0938-6|title=The Evolution of the Milky Way|journal=The Evolution of the Milky Way: Stars Versus Clusters. Edited by Francesca Matteucci and Franco Giovannelli. Published by Kluwer Academic Publishers|volume=255|series=Astrophysics and Space Science Library|year=2000|isbn=978-94-010-3799-0|bibcode=2000ASSL..255.....M|author1=Matteucci|first1=Francesca|last2=Giovannelli|first2=Franco}}
30. ^{{Cite journal | last1 = Taylor | first1 = W. D. | last2 = Evans | first2 = C. J. | last3 = Sana | first3 = H. | last4 = Walborn | first4 = N. R. | last5 = De Mink | first5 = S. E. | last6 = Stroud | first6 = V. E. | last7 = Alvarez-Candal | first7 = A. | last8 = Barbá | first8 = R. H. | last9 = Bestenlehner | first9 = J. M. | last10 = Bonanos | first10 = A. Z. | last11 = Brott | first11 = I. | last12 = Crowther | first12 = P. A. | last13 = De Koter | first13 = A. | last14 = Friedrich | first14 = K. | last15 = Gräfener | first15 = G. | last16 = Hénault-Brunet | first16 = V. | last17 = Herrero | first17 = A. | last18 = Kaper | first18 = L. | last19 = Langer | first19 = N. | last20 = Lennon | first20 = D. J. | last21 = Maíz Apellániz | first21 = J. | last22 = Markova | first22 = N. | last23 = Morrell | first23 = N. | last24 = Monaco | first24 = L. | last25 = Vink | first25 = J. S. | title = The VLT-FLAMES Tarantula Survey | doi = 10.1051/0004-6361/201116785 | journal = Astronomy & Astrophysics | volume = 530 | pages = L10 | year = 2011 | pmid = | pmc = |arxiv = 1103.5387 |bibcode = 2011A&A...530L..10T }}
31. ^{{Cite journal | last1 = Fang | first1 = M. | last2 = Van Boekel | first2 = R. | last3 = King | first3 = R. R. | last4 = Henning | first4 = T. | last5 = Bouwman | first5 = J. | last6 = Doi | first6 = Y. | last7 = Okamoto | first7 = Y. K. | last8 = Roccatagliata | first8 = V. | last9 = Sicilia-Aguilar | first9 = A. | title = Star formation and disk properties in Pismis 24 | doi = 10.1051/0004-6361/201015914 | journal = Astronomy & Astrophysics | volume = 539 | pages = A119 | year = 2012 | pmid = | pmc = |arxiv = 1201.0833 |bibcode = 2012A&A...539A.119F }}
32. ^{{Cite journal | last1 = Orosz | first1 = J. A. | last2 = McClintock | first2 = J. E. | last3 = Narayan | first3 = R. | last4 = Bailyn | first4 = C. D. | last5 = Hartman | first5 = J. D. | last6 = Macri | first6 = L. | last7 = Liu | first7 = J. | last8 = Pietsch | first8 = W. | last9 = Remillard | first9 = R. A. | last10 = Shporer | doi = 10.1038/nature06218 | first10 = A. | last11 = Mazeh | first11 = T. | title = A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33 | journal = Nature | volume = 449 | issue = 7164 | pages = 872–875 | year = 2007 | pmid = 17943124| pmc = | bibcode = 2007Natur.449..872O |arxiv = 0710.3165 }}
33. ^{{cite journal|title=High-mass stars in the Galactic center Quintuplet cluster|author=Adriane Liermann et all|journal=Bulletin de la Societe Royale des Sciences de Liege|volume=80|year=2011|pages=160–164|bibcode=2011BSRSL..80..160L}}
34. ^{{Cite journal | last1 = Bhatt | first1 = H. | last2 = Pandey | first2 = J. C. | last3 = Kumar | first3 = B. | last4 = Singh | first4 = K. P. | last5 = Sagar | first5 = R. | title = X-ray emission characteristics of two Wolf–Rayet binaries: V444 Cyg and CD Cru | doi = 10.1111/j.1365-2966.2009.15999.x | journal = Monthly Notices of the Royal Astronomical Society | volume = 402 | issue = 3 | pages = 1767–1779 | year = 2010 | pmid = | pmc = |arxiv = 0911.1489 |bibcode = 2010MNRAS.402.1767B }}
35. ^{{cite journal|bibcode=2012A&A...544A..67B|arxiv=1205.3075|last1= Bouret|first1= J. -C.|title= Properties of Galactic early-type O-supergiants: A combined FUV-UV and optical analysis|journal=Astronomy & Astrophysics |volume=544 |pages=A67 |last2= Hillier|first2= D. J. |last3= Lanz|first3= T. |last4= Fullerton|first4= A. W. |year= 2012 |doi=10.1051/0004-6361/201118594}}
36. ^{{cite journal |title=The Tarantula Massive Binary Monitoring project: II. A first SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145 |journal=Astronomy & Astrophysics |volume=1610 |last1=Shenar |first1=T. |date= 2016 |arxiv=1610.07614 |doi=10.1051/0004-6361/201629621 |bibcode=2017A&A...598A..85S |page=A85}}
37. ^The masses were revised with better data, but refinements are still needed.
38. ^{{Cite journal | last1 = Vink | first1 = J. S. | last2 = Davies | first2 = B. | last3 = Harries | first3 = T. J. | last4 = Oudmaijer | first4 = R. D. | last5 = Walborn | first5 = N. R. | title = On the presence and absence of disks around O-type stars | doi = 10.1051/0004-6361/200912610 | journal = Astronomy and Astrophysics | volume = 505 | issue = 2 | pages = 743–753 | year = 2009 | pmid = | pmc = |arxiv = 0909.0888 |bibcode = 2009A&A...505..743V }}
39. ^{{cite journal|title=Dynamical Masses for the Large Magellanic Cloud Massive Binary System [L72] LH 54-425|author=Williams, S. J.|display-authors=etal|journal=The Astrophysical Journal|volume=682|issue=1|pages=492–498|date=2008|bibcode=2008ApJ...682..492W|doi=10.1086/589687|arxiv=0802.4232}}
40. ^{{Cite journal | last1 = Geballe | first1 = T. R. | last2 = Najarro | first2 = F. | last3 = Rigaut | first3 = F. | last4 = Roy | first4 = J. ‐R. | title = TheK‐Band Spectrum of the Hot Star in IRS 8: An Outsider in the Galactic Center? | doi = 10.1086/507764 | journal = The Astrophysical Journal | volume = 652 | issue = 1 | pages = 370–375 | year = 2006 | pmid = | pmc = |arxiv = astro-ph/0607550 |bibcode = 2006ApJ...652..370G }}
41. ^{{Cite journal | last1 = Gorlova | first1 = N. | last2 = Lobel | first2 = A. | last3 = Burgasser | first3 = A. J. | last4 = Rieke | first4 = G. H. | last5 = Ilyin | first5 = I. | last6 = Stauffer | first6 = J. R. | doi = 10.1086/507590 | title = On the CO Near‐Infrared Band and the Line‐splitting Phenomenon in the Yellow Hypergiant ρ Cassiopeiae | journal = The Astrophysical Journal | volume = 651 | issue = 2 | pages = 1130–1150 | year = 2006 | pmid = | pmc = |arxiv = astro-ph/0607158 |bibcode = 2006ApJ...651.1130G }}
42. ^{{Cite journal | last1 = Herrero | first1 = A. | last2 = Puls | first2 = J. | last3 = Najarro | first3 = F. | year = 2002 | title = Fundamental parameters of Galactic luminous OB stars VI. Temperatures, masses and WLR of Cyg OB2 supergiants| journal = Astronomy and Astrophysics | volume = 396 | issue = 3 | pages = 949–966 | arxiv = astro-ph/0210469| bibcode = 2002A&A...396..949H| doi = 10.1051/0004-6361:20021432 }}
43. ^{{cite journal|author1=Paul A Crowther|author2=Carpano|author3=Hadfield|author4=Pollock|title=On the optical counterpart of NGC300 X-1 and the global Wolf–Rayet content of NGC300|doi=10.1051/0004-6361:20077677|date=2007|journal=Astronomy and Astrophysics|volume=469|pages=L31|issue=31|arxiv=0705.1544|bibcode = 2007A&A...469L..31C }}
44. ^{{Cite journal | doi = 10.1088/0004-637X/730/2/140| title = Ic10 X-1/ngc300 X-1: The Very Immediate Progenitors of Bh-Bh Binaries| journal = The Astrophysical Journal| volume = 730| issue = 2| pages = 140| year = 2011| last1 = Bulik | first1 = T. | last2 = Belczynski | first2 = K. | last3 = Prestwich | first3 = A. | bibcode=2011ApJ...730..140B|arxiv = 0803.3516 }}
45. ^{{cite journal|arxiv=1511.09365|title=X-ray, UV and optical analysis of supergiants: ε Ori|author=Raul E. Puebla|author2=D. John Hillier|author3=Janos Zsargó|author4=David H. Cohen|author5=Maurice A. Leutenegger|doi=10.1093/mnras/stv2783|bibcode = 2016MNRAS.456.2907P|volume=456|journal=Monthly Notices of the Royal Astronomical Society|issue=3|pages=2907–2936|year=2015}}
46. ^{{cite web|title=VLT image of the surroundings of VY Canis Majoris seen with SPHERE|url=https://www.eso.org/public/images/eso1546a/|website=www.eso.org|accessdate=15 June 2018}}
47. ^{{cite journal | doi = 10.1051/0004-6361/201219126 | last1 = Wittkowski | first1 = M. | last2 = Hauschildt | first2 = P.H. | last3 = Arroyo-Torres | first3 = B. | last4 = Marcaide | first4 = J.M. | title = Fundamental properties and atmospheric structure of the red supergiant VY CMa based on VLTI/AMBER spectro-interferometry | journal = Astronomy & Astrophysics | volume = 540 | pages = L12 | date = 5 April 2012 | bibcode=2012A&A...540L..12W|arxiv=1203.5194}}
48. ^{{cite journal |title=DISCOVERY OF THE MASSIVE OVERCONTACT BINARY VFTS 352: EVIDENCE FOR ENHANCED INTERNAL MIXING |journal=The Astrophysical Journal |date=13 October 2015 |last=Almeida |first=L. A. |last2=Sana |first2=H. |last3=de Mink |first3=S. E. |volume=812 |issue=2 |pages=102 |display-authors=etal|doi=10.1088/0004-637X/812/2/102 |bibcode=2015ApJ...812..102A |arxiv = 1509.08940 }}
49. ^{{cite journal|bibcode=1997A&A...320..196A|title=Radiation driven wind models for A, F and G supergiants|journal=Astronomy and Astrophysics|volume=320|pages=196|author1=Achmad|first1=L.|last2=Lamers|first2=H. J. G. L. M.|last3=Pasquini|first3=L.|year=1997}}
50. ^{{Cite journal | doi = 10.1051/0004-6361/201423420| title = A multiple system of high-mass YSOs surrounded by disks in NGC 7538 IRS1| journal = Astronomy & Astrophysics| volume = 566| pages = A150| year = 2014| last1 = Moscadelli | first1 = L.| last2 = Goddi | first2 = C. | bibcode=2014A&A...566A.150M|arxiv = 1404.3957 }}
51. ^Note that some black holes may have cosmological origins, and would then never have been stars. This is thought to be especially likely in the cases of the most massive black holes.

External links

  • Statistics in Arches cluster
  • Most Massive Star Discovered
  • [https://www.sciencedaily.com/releases/2005/03/050309142833.htm Arches cluster]
  • [https://web.archive.org/web/20071028091902/http://www.3towers.com/sGrasslands/Essays/HeavyStar/HeavyStar01.asp How Heavy Can a Star Get?]
  • LBV 1806–20
{{Star}}{{Supernovae}}{{Black holes}}

3 : Lists of stars|Lists of superlatives in astronomy|Lists of astronomical objects

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/28 15:19:58