请输入您要查询的百科知识:

 

词条 List of numbers
释义

  1. Rational numbers

      Natural numbers    Powers of ten (scientific notation)    Integers    Notable integers    Named numbers    Prime numbers    Highly composite numbers    Perfect numbers    Cardinal numbers    Small numbers    English names for powers of 10    {{anchor|Myriad system}} Myriad, Octad, and -yllion systems    SI prefixes for powers of 10    {{anchor|Fractional numbers}} Fractional numbers  

  2. Irrational and suspected irrational numbers

      Algebraic numbers    Transcendental numbers    Suspected transcendentals    Numbers not known with high precision  

  3. Hypercomplex numbers

      Algebraic complex numbers   Other hypercomplex numbers 

  4. Transfinite numbers

  5. Numbers representing measured quantities

  6. Numbers representing physical quantities

  7. Numbers without specific values

  8. See also

  9. Notes

  10. Further reading

  11. External links

This is a list of articles about numbers (not about numerals).

This article is infinitely incomplete.

Rational numbers

{{main|Rational number}}

A rational number is any number that can be expressed as the quotient or fraction {{math|p/q}} of two integers, a numerator {{math|p}} and a non-zero denominator {{math|q}}.[1] Since {{math|q}} may be equal to 1, every integer is a rational number. The set of all rational numbers, often referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by a boldface {{math|Q}} (or blackboard bold , Unicode ℚ);[2] it was thus denoted in 1895 by Giuseppe Peano after quoziente, Italian for "quotient".

Natural numbers

{{main|Natural number}}

Natural numbers are those used for counting (as in "there are six (6) coins on the table") and ordering (as in "this is the third (3rd) largest city in the country"). In common language, words used for counting are "cardinal numbers" and words used for ordering are "ordinal numbers". There are infinitely many natural numbers.

01 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118 119
120 121 122 123 124 125 126 127 128 129
130 131 132 133 134 135 136 137 138 139
140 141 142 143 144 145 146 147 148 149
150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169
170 171 172 173 174 175 176 177 178 179
180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199
200 201 202 203 204 205 206 207 208 209
210 211 212 213 214 215 216 217 218 219
220 221 222 223 224 225 226 227 228 229
230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249
250 251 252 253 254 255 256 257 258 259
260 270 280 290
300 400 500 600 700 800 900
1000 2000 3000 4000 5000 6000 7000 8000 9000
10000 20000 30000 40000 50000 60000 70000 80000 90000
105 106 107 108 109
1010 10100 1010100Larger numbers

(Note that the status of 0 is ambiguous. In set theory and computer science, 0 is considered a natural number. In number theory, it usually is not.)

Powers of ten (scientific notation)

{{Main|Orders of magnitude (numbers)}}

A power of ten is a number 10k, where k is an integer. For instance, with k = 0, 1, 2, 3, ..., the appropriate powers of ten are 1, 10, 100, 1000, ... Powers of ten can also be fractional: for instance, k = -3 gives 1/1000, or 0.001.

In scientific notation, real numbers are written in the form m × 10n. The number 394,000 is written in this form as 3.94 × 105.

Integers

{{main|Integer}}

Notable integers

Integers that are notable for their mathematical properties or cultural meanings include:

  • −40, the equal point in the Fahrenheit and Celsius scales.
  • −1, the additive inverse of unity.
  • 0, the additive identity.
  • 1, the multiplicative identity. Also the only natural number (not including 0) that isn't prime or composite.
  • 2, the base of the binary number system, used in almost all modern computers and information systems. Also notable as the only even prime number.
  • 3, significant in Christianity as the Trinity. Also considered significant in Hinduism (Trimurti, Tridevi). Holds significance in a number of ancient mythologies.
  • 4, the first composite number, also considered an "unlucky number" in modern China, Japan and Korea due to its audible similarity to the word "Death."
  • 5, number of fingers or toes for almost all amphibians, reptiles and mammals
  • 6, the first of the series of perfect numbers, whose proper factors sum to the number itself.
  • 7, considered a "lucky" number in Western cultures.
  • 8, considered a "lucky" number in Chinese culture. It is also the number of bits in a byte
  • 9, the first odd number that is composite. Also a significant number in Norse Mythology.
  • 10, the number base for most modern counting systems.
  • 11, the fifth prime and first palindromic multi-digit number
  • 12, the number base for some ancient counting systems and the basis for some modern measuring systems. Known as a dozen.
  • 13, considered an "unlucky" number in Western superstition. Also known as a "Baker's Dozen".
  • 14, the number of days in a fortnight.
  • 15, the number of players on a rugby union team. It is also the first point received in tennis.
  • 16, the base of the hexadecimal number system which is utilized within many programming languages.
  • 17, the sum of the first 4 prime numbers, and the only prime which is the sum of 4 consecutive primes.
  • 18, age of majority in most countries in the world.
  • 19, the length of one side of a Go board.
  • 20, known as a score.
  • 21, the legal drinking age in the United States.
  • 22, the namesake of catch-22, a paradoxical condition in which there is no escape due to mutually conflicting or dependent conditions.
  • 23, number of chromosomes in a human haploid. Other human cells have 23 pairs of chromosomes.
  • 25, the first centered square number besides 1 that is also a square number. It is also the number of cents in a quarter.
  • 28, the second perfect number.
  • 42, the "answer to the ultimate question of life, the universe, and everything" in the popular science fiction work The Hitchhiker's Guide to the Galaxy.
  • 60, the number base for some ancient counting systems, such as the Babylonians', and the basis for many modern measuring systems.
  • 69, used as slang to refer to a sexual act.
  • 86, a slang term that is used in the American popular culture as a transitive verb to mean throw out or get rid of.[3]
  • 108, considered sacred by the Dharmic Religions. Approximately equal to the ratio of the distance from Earth to Sun and diameter of the Sun.
  • 144, a dozen times dozen, known as a gross.
  • 255, 28 − 1, a Mersenne number and the smallest perfect totient number that is neither a power of three nor thrice a prime; it is also the largest number that can be represented using an 8-bit unsigned integer.
  • 256, The number of possible combinations within 8 bits, or a byte.
  • 420, a code-term that refers to the consumption of cannabis.
  • 496, the third perfect number.
  • 666, the Number of the Beast from the Book of Revelation.
  • 786, regarded as sacred in the Muslim Abjad numerology.
  • 1024, the number of bytes in a kibibyte. It's also the number of bits in a kibibit.
  • 1729, the Hardy–Ramanujan number, also known as the second taxicab number; that is, the smallest positive integer that can be written as the sum of two positive cubes in two different ways.[4]
  • 5040, mentioned by Plato in the Laws as one of the most important numbers for the city. It is also the largest factorial (7! = 5040) that is also a highly composite number.
  • 8128, the fourth perfect number.
  • 65535, 216 − 1, the maximum value of a 16-bit unsigned integer.
  • 65536, 216, the number of possible 16-bit combinations.
  • 65537, 216 + 1, the most popular RSA public key prime exponent in most SSL/TLS certificates on the Web/Internet.
  • 142857, the smallest base 10 cyclic number.
  • 2147483647, 231 − 1, the maximum value of a 32-bit signed integer using two's complement representation.
  • 9814072356, the largest perfect power that contains no repeated digits in base ten.
  • 9223372036854775807, 263 − 1, the maximum value of a 64-bit signed integer using two's complement representation.

Named numbers

  • Googol (10100) and googolplex (10(10100)) and googolplexian (10(10(10100))) or 1 followed by a googolplex of zeros.
  • Graham's number
  • Moser's number
  • Shannon number
  • Hardy–Ramanujan number (1729)
  • Skewes' number
  • Avogadro's number
  • Kaprekar's constant (6174)

Prime numbers

{{Main|Prime number}}

A prime number is a positive integer which has exactly two divisors: 1 and itself.

The first 100 prime numbers are:

  2   3   5   7  11  13  17  19  23  29
 31  37  41  43  47  53  59  61  67  71
 73  79  83  89  97 101 103 107 109 113
127 131 137 139 149 151 157 163 167173
179181 191193 197 199 211 223 227229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541

Highly composite numbers

{{main|Highly composite number}}

A highly composite number (HCN) is a positive integer with more divisors than any smaller positive integer. They are often used in geometry, grouping and time measurement.

The first 20 highly composite numbers are:

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560.

Perfect numbers

{{main|Perfect number}}

A perfect number is an integer that is the sum of its positive proper divisors (all divisors except itself).

The first 10 perfect numbers:

16
228
3496
48 128
533 550 336
68 589 869 056
7137 438 691 328
82 305 843 008 139 952 128
92 658 455 991 569 831 744 654 692 615 953 842 176
10191 561 942 608 236 107 294 793 378 084 303 638 130 997 321 548 169 216

Cardinal numbers

{{main|cardinal number}}

In the following tables, [and] indicates that the word and is used in some dialects (such as British English), and omitted in other dialects (such as American English).

Small numbers

This table demonstrates the standard English construction of small cardinal numbers up to one hundred million—names for which all variants of English agree.

Value Name Alternate names, and names for sets of the given size
0 Zero aught, cipher, cypher, donut, dot, duck, goose egg, love, nada, naught, nil, none, nought, nowt, null, ought, oh, squat, zed, zilch, zip, zippo, Sunya (Sanskrit)
1 One ace, individual, single, singleton, unary, unit, unity, Pratham(Sanskrit)
2 Two binary, brace, couple, couplet, distich, deuce, double, doubleton, duad, duality, duet, duo, dyad, pair, span, twain, twin, twosome, yoke
3 Three deuce-ace, leash, set, tercet, ternary, ternion, terzetto, threesome, tierce, trey, triad, trine, trinity, trio, triplet, troika, hat-trick
4 Four foursome, quadruplet, quatern, quaternary, quaternity, quartet, tetrad
5 Five cinque, fin, fivesome, pentad, quint, quintet, quintuplet
6 Six half dozen, hexad, sestet, sextet, sextuplet, sise
7 Seven heptad, septet, septuple, walking stick
8 Eight octad, octave, octet, octonary, octuplet, ogdoad
9 Nine ennead
10 Ten deca, decade, das (India)
11 Eleven onze, ounze, ounce, banker's dozen
12 Twelve dozen
13 Thirteen baker's dozen, long dozen[5]
14 Fourteen
15 Fifteen
16 Sixteen
17 Seventeen
18 Eighteen
19 Nineteen
20 Twenty score,
21 Twenty-one long score[5], blackjack
22 Twenty-two Deuce-deuce
23 Twenty-three
24 Twenty-four two dozen
25 Twenty-five
26 Twenty-six
27 Twenty-seven
28 Twenty-eight
29 Twenty-nine
30 Thirty
31 Thirty-one
32 Thirty-two
33 Thirty-three
34 Thirty-four
35 Thirty-five
40 Forty two-score
41 Forty-one
42 Forty-two
45 Forty-five
50 Fifty half-century
55 Fifty-five double nickel
60 Sixty three-score
70 Seventy three-score and ten
80 Eighty four-score
87 Eighty-seven four-score and seven
90 Ninety four-score and ten
100 One hundred centred, century, ton, short hundred
101 One hundred [and] one
110 One hundred [and] ten
111 One hundred [and] eleven eleventy-one[6]
120 One hundred [and] twenty long hundred,[5] great hundred, (obsolete) hundred
121 One hundred [and] twenty-one
144 One hundred [and] forty-four gross, dozen dozen, small gross
200 Two hundred
300 Three hundred
400 Four hundred
500 Five hundred
600 Six hundred
666 Six hundred [and] sixty-six
700 Seven hundred
777 Seven hundred [and] seventy-seven
800 Eight hundred
900 Nine hundred
{{gaps|1|000}} One thousand chiliad, grand, G, thou, yard, kilo, k, millennium, Hajaar (India)
{{gaps|1|001}} One thousand [and] one
{{gaps|1|010}} One thousand [and] ten
{{gaps|1|011}} One thousand [and] eleven
{{gaps|1|024}} One thousand [and] twenty-four kibi or kilo in computing, see binary prefix (kilo is shortened to K, Kibi to Ki)
{{gaps|1|100}} One thousand one hundred Eleven hundred
{{gaps|1|101}} One thousand one hundred [and] one
{{gaps|1|728}} One thousand seven hundred [and] twenty-eight great gross, long gross, dozen gross
{{gaps|2|000}} Two thousand
{{gaps|3|000}} Three thousand
{{gaps|10|000}} Ten thousand myriad, wan (China)
{{gaps|100|000}} One hundred thousand lakh
{{gaps|500|000}} Five hundred thousand crore (Iranian)
{{gaps|1|000|000}} One million Mega, meg, mil, (often shortened to M)
{{gaps|1|048|576}} One million forty-eight thousand five hundred [and] seventy-six Mibi or Mega in computing, see binary prefix (Mega is shortened to M, Mibi to Mi)
{{gaps|10|000|000}} Ten million crore (Indian)(Pakistan)
{{gaps|100|000|000}} One hundred million yi (China)

English names for powers of 10

This table compares the English names of cardinal numbers according to various American, British, and Continental European conventions. See English numerals or names of large numbers for more information on naming numbers.

Short scale Long scalePower
Value American British
(Nicolas Chuquet)
Continental European
(Jacques Peletier du Mans)
of a thousand of a million
100 One 1000−1+1 10000000
101 Ten
102 Hundred
103 Thousand 10000+1 10000000.5
106 Million 10001+1 10000001
109 Billion Thousand million Milliard 10002+1 10000001.5
1012 Trillion Billion 10003+1 10000002
1015 Quadrillion Thousand billion Billiard 10004+1 10000002.5
1018 Quintillion Trillion 10005+1 10000003
1021 Sextillion Thousand trillion Trilliard 10006+1 10000003.5
1024 Septillion Quadrillion 10007+1 10000004
1027 Octillion Thousand quadrillion Quadrilliard 10008+1 10000004.5
1030 Nonillion Quintillion 10009+1 10000005
1033 Decillion Thousand quintillion Quintilliard 100010+1 10000005.5
1036 Undecillion Sextillion 100011+1 10000006
1039 Duodecillion Thousand sextillion Sextilliard 100012+1 10000006.5
1042 Tredecillion Septillion 100013+1 10000007
1045 Quattuordecillion Thousand septillion Septilliard 100014+1 10000007.5
1048 Quindecillion Octillion 100015+1 10000008
1051 Sexdecillion Thousand octillion Octilliard 100016+1 10000008.5
1054 Septendecillion Nonillion 100017+1 10000009
1057 Octodecillion Thousand nonillion Nonilliard 100018+1 10000009.5
1060 Novemdecillion Decillion 100019+1 100000010
1063 Vigintillion Thousand decillion Decilliard 100020+1 100000010.5
1066 Unvigintillion Undecillion 100021+1 100000011
1069 Duovigintillion Thousand undecillion Undecilliard 100022+1 100000011.5
1072 Trevigintillion Duodecillion 100023+1 100000012
1075 Quattuorvigintillion Thousand duodecillion Duodecilliard 100024+1 100000012.5
1078 Quinvigintillion Tredecillion 100025+1 100000013
1081 Sexvigintillion Thousand tredecillion Tredecilliard 100026+1 100000013.5
1084 Septenvigintillion Quattuordecillion 100027+1 100000014
1087 Octovigintillion Thousand quattuordecillion Quattuordecilliard 100028+1 100000014.5
1090 Novemvigintillion Quindecillion 100029+1 100000015
1093 Trigintillion Thousand quindecillion Quindecilliard 100030+1 100000015.5
1096 Untrigintillion Sexdecillion 100031+1 100000016
1099 Duotrigintillion Thousand sexdecillion Sexdecilliard 100032+1 100000016.5
... ... ... ... ...
10120 Novemtrigintillion Vigintillion 100039+1 100000020
10123 Quadragintillion Thousand vigintillion Vigintilliard 100040+1 100000020.5
... ... ... ... ...
10153 Quinquagintillion Thousand quinvigintillion Quinvigintilliard 100050+1 100000025.5
... ... ... ... ...
10180 Novemquinquagintillion Trigintillion 100059+1 100000030
10183 Sexagintillion Thousand trigintillion Trigintilliard 100060+1 100000030.5
... ... ... ... ...
10213 Septuagintillion Thousand quintrigintillion Quintrigintilliard 100070+1 100000035.5
... ... ... ... ...
10240 Novemseptuagintillion Quadragintillion 100079+1 100000040
10243 Octogintillion Thousand quadragintillion Quadragintilliard 100080+1 100000040.5
... ... ... ... ...
10273 Nonagintillion Thousand quinquadragintillion Quinquadragintilliard 100090+1 100000045.5
... ... ... ... ...
10300 Novemnonagintillion Quinquagintillion 100099+1 100000050
10303 Centillion Thousand quinquagintillion Quinquagintilliard 1000100+1 100000050.5
... ... ... ... ...
10360 Cennovemdecillion Sexagintillion 1000119+1 100000060
10420 Cennovemtrigintillion Septuagintillion 1000139+1 100000070
10480 Cennovemquinquagintillion Octogintillion 1000159+1 100000080
10540 Cennovemseptuagintillion Nonagintillion 1000179+1 100000090
10600 Cennovemnonagintillion Centillion 1000199+1 1000000100
10603 Ducentillion Thousand centillion Centilliard 1000200+1 1000000100.5
10606 Killcentillion 10 Thousand centillion 1000201+1 1000000101

There is no consistent and widely accepted way to extend cardinals beyond centillion (centilliard).

{{anchor|Myriad system}} Myriad, Octad, and -yllion systems

Value Myriad System Name Octad System Name Chinese Myriad Scale Chinese Long Scale Knuth-proposed
System Name
Knuth-proposed
System Notation
100OneOne One 1
101TenTen Ten 10
102HundredHundred Hundred 100
103ThousandThousand Ten hundred 1000
104MyriadMyriad () ()Myriad 1,0000
105Ten myriadTen myriad 十萬 (十万) 十萬 (十万)Ten myriad 10,0000
106Hundred myriadHundred myriad 百萬 (百万) 百萬 (百万)Hundred myriad 100,0000
107Thousand myriadThousand myriad 千萬 (千万) 千萬 (千万)Ten hundred myriad 1000,0000
108Second Myriad Octad (亿) (亿)Myllion 1;0000,0000
1012Third myriadMyriad Octad 萬億Myriad myllion 1,0000;0000,0000
1016Fourth myriadSecond octad Byllion 1:0000,0000;0000,0000
1020Fifth myriadMyriad second octad 萬兆
1024Sixth myriadThird octad 億兆Myllion byllion 1;0000,0000:0000,0000;0000,0000
1028Seventh myriadMyriad third octad 萬億兆
1032Eighth myriadFourth octad () Tryllion 1'0000,0000;0000,0000:0000,0000;0000,0000
1036Ninth myriadMyriad fourth octad () 萬京
1040Tenth myriadFifth octad 億京
1044Eleventh myriadMyriad fifth octad () 萬億京
1048Twelveth myriadSixth octad () (in China and in Japan) 兆京
1052Thirteenth myriadMyriad sixth octad 恆河沙 (恒河沙) (in China) 萬兆京
1056Fourteenth myriadSeventh octad 阿僧祇 (in China); 恆河沙 (恒河沙) (in Japan) 億兆京
1060Fifteenth myriadMyriad seventh octad 那由他, 那由多 (in China) 萬億兆京
1064Sixteenth myriadEighth octad 不可思議 (不可思议) (in China), 阿僧祇 (in Japan) Quadryllion 1"0000,0000;0000,0000:0000,0000;0000,0000'0000,0000;0000,0000:0000,0000;0000,0000
1068Seventeenth myriadMyriad eighth octad 無量大数 (in China) 萬垓
1072Eighteenth myriadNineth octad 那由他, 那由多 (in Japan) 億垓
1080Twentieth myriadTenth octad 不可思議 (in Japan) 兆垓
1088Twenty-second myriadEleventh Octad 無量大数 (in Japan) 億兆垓
10128 Quintyllion
10256 Sextyllion
10512 ()Septyllion
101,024 ()Octyllion
102,048 Nonyllion
104,096 ()Decyllion
108,192 ()Undecyllion
1016,384Duodecyllion
1032,768Tredecyllion
1065,536Quattuordecyllion
10131,072Quindecyllion
10262,144Sexdecyllion
10524,288Septendecyllion
101,048,576Octodecyllion
102,097,152Novemdecyllion
104,194,304Vigintyllion
10232Trigintyllion
10242Quadragintyllion
10252Quinquagintyllion
10262Sexagintyllion
10272Septuagintyllion
10282Octogintyllion
10292Nonagintyllion
102102Centyllion
1021,002Millyllion
10210,002Myryllion

SI prefixes for powers of 10

Value 1000m SI prefix Name Binary prefix 1024m = 210m Value
{{gaps|1|000}} 10001 k Kilo Ki 10241 1 024
{{gaps|1|000|000}} 10002 M Mega Mi 10242 1 048 576
{{gaps|1|000|000|000}} 10003 G Giga Gi 10243 1 073 741 824
{{gaps|1|000|000|000|000}} 10004 T Tera Ti 10244 1 099 511 627 776
{{gaps|1|000|000|000|000|000}} 10005 P Peta Pi 10245 1 125 899 906 842 624
{{gaps|1|000|000|000|000|000|000}} 10006 E Exa Ei 10246 1 152 921 504 606 846 976
{{gaps|1|000|000|000|000|000|000|000}} 10007 Z Zetta Zi 10247 1 180 591 620 717 411 303 424
{{gaps|1|000|000|000|000|000|000|000|000}} 10008 Y Yotta Yi 10248 1 208 925 819 614 629 174 706 176

{{anchor|Fractional numbers}} Fractional numbers

{{See also|Fraction (mathematics)#Vocabulary|English numerals#Fractions and decimals}}

This is a table of English names for non-negative rational numbers less than or equal to 1. It also lists alternative names, but there is no widespread convention for the names of extremely small positive numbers.

Keep in mind that rational numbers like 0.12 can be represented in infinitely many ways, e.g. zero-point-one-two (0.12), twelve percent (12%), three twenty-fifths ({{sfrac|3|25}}), nine seventy-fifths ({{sfrac|9|75}}), six fiftieths ({{sfrac|6|50}}), twelve hundredths ({{sfrac|12|100}}), twenty-four two-hundredths ({{sfrac|24|200}}), etc.

Value Fraction Common names Alternative names
1{{sfrac|1|1}} One 0.999..., Unity
0.9{{sfrac|9|10}} Nine tenths, [zero] point nine
0.8{{sfrac|4|5}} Four fifths, eight tenths, [zero] point eight
0.7{{sfrac|7|10}} Seven tenths, [zero] point seven
0.6{{sfrac|3|5}} Three fifths, six tenths, [zero] point six
0.5{{sfrac|1|2}} One half, five tenths, [zero] point five
0.4{{sfrac|2|5}} Two fifths, four tenths, [zero] point four
0.333|333...}}{{sfrac|1|3}} One third
0.3{{sfrac|3|10}} Three tenths, [zero] point three
0.25{{sfrac|1|4}} One quarter, one fourth, twenty-five hundredths, [zero] point two five
0.2{{sfrac|1|5}} One fifth, two tenths, [zero] point two
0.166|666...}}{{sfrac|1|6}} One sixth
0.142|857|142|857...}}{{sfrac|1|7}} One seventh
0.125{{sfrac|1|8}} One eighth, one-hundred-[and-]twenty-five thousandths, [zero] point one two five
0.111|111...}}{{sfrac|1|9}} One ninth
0.1{{sfrac|1|10}} One tenth, [zero] point one One perdecime, one perdime
0.090|909...}}{{sfrac|1|11}} One eleventh
0.09{{sfrac|9|100}} Nine hundredths, [zero] point zero nine
0.083|333...}}{{sfrac|1|12}} One twelfth
0.08{{sfrac|2|25}} Two twenty-fifths, eight hundredths, [zero] point zero eight
0.0625{{sfrac|1|16}} One sixteenth, six-hundred-[and-]twenty-five ten-thousandths, [zero] point zero six two five
0.05{{sfrac|1|20}} One twentieth, five hundredths, [zero] point zero five
0.047|619|047|619...}}{{sfrac|1|21}} One twenty-first
0.045|454|545...}}{{sfrac|1|22}} One twenty-second
0.043|478|260|869|565|217|391|304|347...}}{{sfrac|1|23}} One twenty-third
0.041|666...}}{{sfrac|1|24}} One twenty-fourth
0.033|333...}}{{sfrac|1|30}} One thirtieth
0.03125{{sfrac|1|32}} One thirty-second, thirty one-hundred [and] twenty five hundred-thousandths, [zero] point zero three one two five
0.016|666...}}{{sfrac|1|60}} One sixtieth
0.015625{{sfrac|1|64}} One sixty-fourth, ten thousand fifty six-hundred [and] twenty-five millionths, [zero] point zero one five six two five
0.012|345|679|012|345|679...}}{{sfrac|1|81}} One eighty-first
0.01{{sfrac|1|100}} One hundredth, [zero] point zero one One percent
0.001{{sfrac|1|1000}} One thousandth, [zero] point zero zero one One permille
0.000|277|777...}}{{sfrac|1|3600}} One thirty-six hundredth
0.0001{{sfrac|1|{{gaps|10|000}}}} One ten-thousandth, [zero] point zero zero zero one One myriadth, one permyria, one permyriad, one basis point
0.000|01}}{{sfrac|1|{{gaps|100|000}}}} One hundred-thousandth, [zero] point zero zero zero zero one One lakhth, one perlakh
0.000|001}}{{sfrac|1|{{gaps|1|000|000}}}} One millionth, [zero] point zero zero zero zero zero one One ppm
0.000|000|1}}{{sfrac|1|{{gaps|10|000|000}}}} One ten-millionth One crorth, one percrore
0.000|000|01}}{{sfrac|1|{{gaps|100|000|000}}}} One hundred-millionth
0.000|000|001}}{{sfrac|1|{{gaps|1|000|000|000}}}} One billionth (in some dialects) One ppb
0{{sfrac|0|1}} Zero Nil

Irrational and suspected irrational numbers

{{main|Irrational number}}

Algebraic numbers

{{main|Algebraic number}}
Expression Approximate value Notes
{{sfrac|{{sqrt|3}}|4}}0.433012701892219323381861585376}} Area of an equilateral triangle with side length 1.
{{sfrac|{{sqrt|5}} − 1|2}}0.618033988749894848204586834366}} Golden ratio conjugate Φ, reciprocal of and one less than the golden ratio.
{{sfrac|{{sqrt|3}}|2}}0.866025403784438646763723170753}} Height of an equilateral triangle with side length 1.
{{radic|2|12}}1.059463094359295264561825294946}} Twelfth root of two.
Proportion between the frequencies of adjacent semitones in the equal temperament scale.
{{sfrac|3{{sqrt|2}}|4}}1.060660171779821286601266543157}} The size of the cube that satisfies Prince Rupert's cube.
{{radic|2|3}}1.259921049894873164767210607278}} Cube root of two.
Length of the edge of a cube with volume two. See doubling the cube for the significance of this number.
1.303577269034296391257099112153}} Conway's constant, defined as the unique positive real root of a certain polynomial of degree 71.
1.324717957244746025960908854478}}x{{sup>3}} = x + 1.
{{sqrt|2}}1.414213562373095048801688724210}}2}} = 2 sin 45° = 2 cos 45°
Square root of two a.k.a. Pythagoras' constant.
Ratio of diagonal to side length in a square.
Proportion between the sides of paper sizes in the ISO 216 series (originally DIN 476 series).
1.465571231876768026656731225220}} The supergolden ratio, the only real solution of . Also the limit to the ratio between subsequent numbers in the binary Look-and-say sequence.
1.538841768587626701285145288018}} Altitude of a regular pentagon with side length 1.
{{sfrac|{{sqrt|17}} − 1|2}}1.561552812808830274910704927987}} The Triangular root of 2.
{{sfrac|{{sqrt|5}} + 1|2}}1.618033988749894848204586834366}}x{{sup>2}} = x + 1.
1.720477400588966922759011977389}} Area of a regular pentagon with side length 1.
{{sqrt|3}}1.732050807568877293527446341506}}3}} = 2 sin 60° = 2 cos 30°
Square root of three a.k.a. the measure of the fish.
Length of the space diagonal of a cube with edge length 1.
Length of the diagonal of a 1 × {{sqrt|2}} rectangle.
Altitude of an equilateral triangle with side length 2.
Altitude of a regular hexagon with side length 1 and diagonal length 2.
1.839286755214161132551852564653}} The Tribonacci constant.
Appears in the volume and coordinates of the snub cube and some related polyhedra.
It satisfies the equation x + x−3 = 2.
{{sqrt|5}}2.236067977499789696409173668731}} Length of the diagonal of a 1 × 2 rectangle.
Length of the diagonal of a {{sqrt>2}} × {{sqrt|3}} rectangle.
Length of the space diagonal of a 1 × {{sqrt|2}} × {{sqrt|2}} rectangular box.
{{sqrt|2}} + 12.414213562373095048801688724210}}S}}), the larger of the two real roots of x{{sup|2}} = 2x + 1.
Altitude of a regular octagon with side length 1.
{{sqrt|6}}2.449489742783178098197284074706}}2}} · {{sqrt|3}} = area of a {{sqrt|2}} × {{sqrt|3}} rectangle.
Length of the space diagonal of a 1 × 1 × 2 rectangular box.
Length of the diagonal of a 1 × {{sqrt|5}} rectangle.
Length of the diagonal of a 2 × {{sqrt|2}} rectangle.
Length of the diagonal of a square with side length {{sqrt|3}}.
{{sfrac|3{{sqrt|3}}|2}}2.598076113533159402911695122588}} Area of a regular hexagon with side length 1.
{{sqrt|7}}2.645751311064590590501615753639}}2}} rectangular box.
Length of the diagonal of a 1 × {{sqrt|6}} rectangle.
Length of the diagonal of a 2 × {{sqrt|3}} rectangle.
Length of the diagonal of a {{sqrt|2}} × {{sqrt|5}} rectangle.
{{sqrt|8}}2.828427124746190097603377448419}}2}}
Volume of a cube with edge length {{sqrt|2}}.
Length of the diagonal of a square with side length 2.
Length of the diagonal of a 1 × {{sqrt|7}} rectangle.
Length of the diagonal of a {{sqrt|2}} × {{sqrt|6}} rectangle.
Length of the diagonal of a {{sqrt|3}} × {{sqrt|5}} rectangle.
{{sqrt|10}}3.162277660168379331998893544433}}2}} · {{sqrt|5}} = area of a {{sqrt|2}} × {{sqrt|5}} rectangle.
Length of the diagonal of a 1 × 3 rectangle.
Length of the diagonal of a 2 × {{sqrt|6}} rectangle.
Length of the diagonal of a {{sqrt|3}} × {{sqrt|7}} rectangle.
Length of the diagonal of a square with side length {{sqrt|5}}.
{{sqrt|11}}3.316624790355399849114932736671}} Length of the diagonal of a 1 × {{sqrt>10}} rectangle.
Length of the diagonal of a 2 × {{sqrt|7}} rectangle.
Length of the diagonal of a 3 × {{sqrt|2}} rectangle.
Length of the diagonal of a {{sqrt|3}} × {{sqrt|8}} rectangle.
Length of the diagonal of a {{sqrt|5}} × {{sqrt|6}} rectangle.
{{sqrt|12}}3.464101615137754587054892683012}}3}}
Length of the space diagonal of a cube with edge length 2.
Length of the diagonal of a 1 × {{sqrt|11}} rectangle.
Length of the diagonal of a 2 × {{sqrt|8}} rectangle.
Length of the diagonal of a 3 × {{sqrt|3}} rectangle.
Length of the diagonal of a {{sqrt|2}} × {{sqrt|10}} rectangle.
Length of the diagonal of a {{sqrt|5}} × {{sqrt|7}} rectangle.
Length of the diagonal of a square with side length {{sqrt|6}}.

Transcendental numbers

{{main|Transcendental number}}
  • (−1)i = e−{{pi}} = {{val|0.0432139183}}...
  • Liouville constant: c = {{val|0.110001000000000000000001000}}...
  • Champernowne constant: C10 = {{val|0.12345678910111213141516}}...
  • ii = {{sqrt|e{{sup|−{{pi}}}}}} = {{val|0.207879576}}...
  • {{sfrac|1|{{pi}}}} = {{val|0.318309886183790671537767526745028724068919291480}}...[7]
  • {{sfrac|1|e}} = {{val|0.367879441171442321595523770161460867445811131031}}...[7]
  • Prouhet–Thue–Morse constant: {{mvar|τ}} = {{val|0.412454033640}}...
  • log10 e = {{val|0.434294481903251827651128918916605082294397005803}}...[7]
  • Omega constant: Ω = {{val|0.5671432904097838729999686622}}...
  • Cahen's constant: c = {{val|0.64341054629}}...
  • ln 2: {{val|0.693147180559945309417232121458}}...
  • {{sfrac|{{pi}}|{{sqrt|18}}}} = 0.7404... the maximum density of sphere packing in three dimensional Euclidean space according to the Kepler conjecture[8]
  • Gauss's constant: G = {{val|0.8346268}}...
  • {{sfrac|{{pi}}|{{sqrt|12}}}} = 0.9068..., the fraction of the plane covered by the densest possible circle packing[9]
  • ei + e−i = 2 cos 1 = {{val|1.08060461}}...
  • {{sfrac|{{pi}}{{sup|4}}|90}} = ζ(4) = {{val|1.082323}}...[10]
  • {{sqrt|2}}{{sub|s}}: {{val|1.559610469}}...[11]
  • log2 3: {{val|1.584962501}}... (the logarithm of any positive integer to any integer base greater than 1 is either rational or transcendental)
  • Gaussian integral: {{sqrt|{{pi}}}} = {{val|1.772453850905516}}...
  • Komornik–Loreti constant: q = {{val|1.787231650}}...
  • Universal parabolic constant: P2 = {{val|2.29558714939}}...
  • Gelfond–Schneider constant: 2{{sup|{{sqrt|2}}}} = {{val|2.665144143}}...
  • e = {{val|2.718281828459045235360287471352662497757247}}...
  • {{pi}} = {{val|3.141592653589793238462643383279502884197169399375}}...
  • {{radic|i|i}} = {{sqrt|e{{sup|{{pi}}}}}} = {{val|4.810477381}}...
  • Tau, or 2{{pi}}: {{mvar|τ}} = {{val|6.283185307179586476925286766559}}..., The ratio of the circumference to a radius, and the number of radians in a complete circle[12][13]
  • Gelfond's constant: {{val|23.14069263277925}}...
  • Ramanujan's constant: e{{sup|{{pi}}{{sqrt|163}}}} = {{val|262537412640768743.99999999999925}}...

Suspected transcendentals

These are irrational numbers that are thought to be, but have not yet been proved to be, transcendental.

  • Z(1): {{val|-0.736305462867317734677899828925614672}}...
  • Heath-Brown–Moroz constant: C = {{val|0.001317641}}...
  • Kepler–Bouwkamp constant: {{val|0.1149420448}}...
  • MRB constant: {{val|0.187859}}...
  • Meissel–Mertens constant: M = {{val|0.2614972128476427837554268386086958590516}}...
  • Bernstein's constant: β = {{val|0.2801694990}}...
  • Strongly carefree constant: {{val|0.286747}}...[14]
  • Gauss–Kuzmin–Wirsing constant: λ1 = {{val|0.3036630029}}...[15]
  • Hafner–Sarnak–McCurley constant: {{val|0.3532363719}}...
  • Artin's constant: {{val|0.3739558136}}...
  • Prime constant: ρ = {{val|0.414682509851111660248109622}}...
  • Carefree constant: {{val|0.428249}}...[16]
  • S(1): {{val|0.438259147390354766076756696625152}}...
  • F(1): {{val|0.538079506912768419136387420407556}}...
  • Stephens' constant: {{val|0.575959}}...[17]
  • Euler–Mascheroni constant: γ = {{val|0.577215664901532860606512090082}}...
  • Golomb–Dickman constant: λ = {{val|0.62432998854355087099293638310083724}}...
  • Twin prime constant: C2 = {{val|0.660161815846869573927812110014}}...
  • Copeland–Erdős constant: {{val|0.235711131719232931374143}}...
  • Feller–Tornier constant: {{val|0.661317}}...[18]
  • Laplace limit: ε = {{val|0.6627434193}}...[19]
  • Taniguchi's constant: {{val|0.678234}}...[20]
  • Continued Fraction Constant: C = {{val|0.697774657964007982006790592551}}...[21]
  • Embree–Trefethen constant: β = {{val|0.70258}}...
  • Sarnak's constant: {{val|0.723648}}...[22]
  • Landau–Ramanujan constant: {{val|0.76422365358922066299069873125}}...
  • C(1): {{val|0.77989340037682282947420641365}}...
  • {{sfrac|1|ζ(3)}} = {{val|0.831907}}..., the probability that three random numbers have no common factor greater than 1.[8]
  • Brun's constant for prime quadruplets: B2 = {{val|0.8705883800}}...
  • Quadratic class number constant: {{val|0.881513}}...[23]
  • Catalan's constant: G = {{val|0.915965594177219015054603514932384110774}}...
  • Viswanath's constant: σ(1) = {{val|1.1319882487943}}...
  • Khinchin–Lévy constant: {{val|1.1865691104}}...[24]
  • ζ(3) = {{val|1.202056903159594285399738161511449990764986292}}..., also known as Apéry's constant, known to be irrational, but not known whether or not it is transcendental.[25]
  • Vardi's constant: E = {{val|1.264084735305}}...
  • Glaisher–Kinkelin constant: A = {{val|1.28242712}}...
  • Mills' constant: A = {{val|1.30637788386308069046}}...
  • Totient summatory constant: {{val|1.339784}}...[26]
  • Ramanujan–Soldner constant: μ = {{val|1.451369234883381050283968485892027449493}}...
  • Backhouse's constant: {{val|1.456074948}}...
  • Favard constant: K1 = {{val|1.57079633}}...
  • Erdős–Borwein constant: E = {{val|1.606695152415291763}}...
  • Somos' quadratic recurrence constant: σ = {{val|1.661687949633594121296}}...
  • Niven's constant: c = {{val|1.705211}}...
  • Brun's constant: B2 = {{val|1.902160583104}}...
  • Landau's totient constant: {{val|1.943596}}...[27]
  • exp(−W{{sub|0}}(−ln({{radic|3|3}}))) = {{val|2.47805268028830}}..., the smaller solution to 3{{sup|x}} = x{{sup|3}} and what, when put to the root of itself, is equal to 3 put to the root of itself.[28]
  • Second Feigenbaum constant: α = 2.5029...
  • Sierpiński's constant: K = {{val|2.5849817595792532170658936}}...
  • Barban's constant: {{val|2.596536}}...[29]
  • Khinchin's constant: K0 = {{val|2.685452001}}...[30]
  • Fransén–Robinson constant: F = {{val|2.8077702420}}...
  • Murata's constant: {{val|2.826419}}...[31]
  • Lévy's constant: γ = {{val|3.275822918721811159787681882}}...
  • Reciprocal Fibonacci constant: ψ = {{val|3.359885666243177553172011302918927179688905133731}}...
  • Van der Pauw's constant: {{sfrac|{{pi}}|ln 2}} = {{val|4.53236014182719380962}}...[32]
  • First Feigenbaum constant: δ = 4.6692...

Numbers not known with high precision

  • The constant in the Berry–Esseen Theorem: 0.4097 < C < 0.4748
  • 2nd Landau's constant: 0.4330 < B < 0.472
  • Bloch's constant: 0.4332 < B < 0.4719
  • 1st Landau's constant: 0.5 < L < 0.5433
  • 3rd Landau's constant: 0.5 < A ≤ 0.7853
  • Grothendieck constant: 1.57 < k < 1.79

Hypercomplex numbers

{{main|Hypercomplex number}}

Hypercomplex number is a traditional term for an element of a unital algebra over the field of real numbers.

Algebraic complex numbers

  • Imaginary unit: i = {{sqrt|−1}}
  • nth roots of unity: (ξ{{sub|n}}){{sup|k}} = cos (2{{pi}} {{sfrac|k|n}}) + i sin (2{{pi}} {{sfrac|k|n}}), while 0 ≤ kn−1, GCD(k, n) = 1

Other hypercomplex numbers

  • The quaternions
  • The octonions
  • The sedenions
  • The dual numbers (with an infinitesimal)

Transfinite numbers

{{main|Transfinite number}}

Transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite.

  • Aleph-null: ℵ{{sub|0}}: the smallest infinite cardinal, and the cardinality of ℕ, the set of natural numbers
  • Aleph-one: ℵ{{sub|1}}: the cardinality of ω1, the set of all countable ordinal numbers
  • Beth-one: ℶ{{sub|1}} the cardinality of the continuum 2{{sup|ℵ{{sub|0}}}}
  • ℭ or : the cardinality of the continuum 2{{sup|ℵ{{sub|0}}}}
  • omega: ω, the smallest infinite ordinal

Numbers representing measured quantities

Various terms have arisen to describe commonly used measured quantities.

  • Pair: 2 (the base of the binary numeral system)
  • Dozen: 12 (the base of the duodecimal numeral system)
  • Baker's dozen: 13
  • Score: 20 (the base of the vigesimal numeral system)
  • Gross: 144 (= 122)
  • Great gross: 1728 (= 123)

Numbers representing physical quantities

Physical quantities that appear in the universe are often described using physical constants.

  • Avogadro constant: N{{sub|A}} = {{val|6.0221417930e23}} mol−1
  • Coulomb's constant: k{{sub|e}} = {{val|8.987551787368e9}} N·m2/C2 (m/F)
  • Electronvolt: eV = {{val|1.60217648740e-19}} J
  • Electron relative atomic mass: A{{sub|r}}(e) = {{val|0.0005485799094323}}...
  • Fine structure constant: α = {{val|0.007297352537650}}...
  • Gravitational constant: G = {{val|6.67384e−11}} N·(m/kg)2
  • Molar mass constant: M{{sub|u}} = 0.001 kg/mol
  • Planck constant: h = {{val|6.6260689633e-34}} J · s
  • Rydberg constant: R{{sub|∞}} = {{val|10973731.56852773}} m−1
  • Speed of light in vacuum: c = {{val|299792458}} m/s
  • Stefan–Boltzmann constant: σ = {{val|5.670400e-8}} W · m−2 · K−4

Numbers without specific values

{{Main|Indefinite and fictitious numbers}}

Many languages have words expressing indefinite and fictitious numbers—inexact terms of indefinite size, used for comic effect, for exaggeration, as placeholder names, or when precision is unnecessary or undesirable. One technical term for such words is "non-numerical vague quantifier".[33] Such words designed to indicate large quantities can be called "indefinite hyperbolic numerals".[34]

See also

{{col-begin}}{{col-break|width=33%}}
  • English-language numerals
  • Floating point
  • Fraction (mathematics)
  • Integer sequence
  • Interesting number paradox
  • Large numbers
  • List of mathematical constants
  • List of numbers in various languages
  • List of prime numbers
  • List of types of numbers
  • Mathematical constant
  • Names of large numbers
{{col-break}}
  • Names of small numbers
  • Negative number
  • Number prefix
  • Numeral (linguistics)
  • Orders of magnitude (numbers)
  • Ordinal number
  • The Penguin Dictionary of Curious and Interesting Numbers
  • Power of two
  • Powers of 10
  • SI prefix
  • Surreal number
  • Table of prime factors
{{col-end}}

Notes

1. ^{{cite book |last = Rosen |first=Kenneth |year=2007 |title=Discrete Mathematics and its Applications |edition=6th |publisher=McGraw-Hill |location=New York, NY |isbn=978-0-07-288008-3 |pages=105, 158–160}}
2. ^{{cite web|last1=Rouse|first1=Margaret|title=Mathematical Symbols|url=http://searchdatacenter.techtarget.com/definition/Mathematical-Symbols|accessdate=1 April 2015}}
3. ^{{cite web|url=http://www.merriam-webster.com/dictionary/86|title=Eighty-six – Definition of eighty-six by Merriam-Webster|work=merriam-webster.com|deadurl=no|archiveurl=https://web.archive.org/web/20130408004615/http://www.merriam-webster.com/dictionary/86|archivedate=2013-04-08|df=}}
4. ^{{cite web|url=http://mathworld.wolfram.com/Hardy-RamanujanNumber.html|title=Hardy–Ramanujan Number|first=Eric W.|last=Weisstein|publisher=|deadurl=no|archiveurl=https://web.archive.org/web/20040408221409/http://mathworld.wolfram.com/Hardy-RamanujanNumber.html|archivedate=2004-04-08|df=}}
5. ^{{cite web|url=https://books.google.com/books?id=cDkSAAAAYAAJ&pg=PA417&lpg=PA417&dq=%22long%20score%22%2021&source=bl&ots=uU-HfR9K0J&sig=YhXx-SlxYVF38x27a_X9Ia7ncR8&hl=en&ei=9vjSTbPvM8ezrAeys6jECQ&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBgQ6AEwAA#v=onepage&q&f=false|title=The Shipmaster's Assistant, and Commercial Digest: Containing Information Useful to Merchants, Owners, and Masters of Ships |first=Joseph|last=Blunt|date=1 January 1837|publisher=E. & G.W. Blunt|via=Google Books}}
6. ^{{cite news |last=Ezard |first=John |date=2 Jan 2003 |title=Tolkien catches up with his hobbit |url=https://www.theguardian.com/uk/2003/jan/02/jrrtolkien.books |work=The Guardian |access-date=6 Apr 2018 }}
7. ^"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 27.
8. ^"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 29.
9. ^"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 30.
10. ^"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 33.
11. ^{{cite web|url=http://www.qbyte.org/puzzles/p029s.html|title=Nick's Mathematical Puzzles: Solution 29|publisher=|deadurl=no|archiveurl=https://web.archive.org/web/20111018184029/http://www.qbyte.org/puzzles/p029s.html|archivedate=2011-10-18|df=}}
12. ^"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 69
13. ^Sequence {{OEIS2C|A019692}}.
14. ^{{OEIS2C|A065473}}
15. ^{{mathworld|urlname=Gauss-Kuzmin-WirsingConstant|title=Gauss–Kuzmin–Wirsing Constant}}
16. ^{{OEIS2C|A065464}}
17. ^{{OEIS2C|A065478}}
18. ^{{OEIS2C|A065493}}
19. ^ 
20. ^{{OEIS2C|A175639}}
21. ^{{cite web|url=http://mathworld.wolfram.com/ContinuedFractionConstants.html|title=Continued Fraction Constant|first=Eric W.|last=Weisstein|publisher=Wolfram Research, Inc.|deadurl=no|archiveurl=https://web.archive.org/web/20111024094057/http://mathworld.wolfram.com/ContinuedFractionConstant.html|archivedate=2011-10-24|df=}}
22. ^{{OEIS2C|A065476}}
23. ^{{OEIS2C|A065465}}
24. ^ 
25. ^"The Penguin Dictionary of Curious and Interesting Numbers" by David Wells, page 33
26. ^{{OEIS2C|A065483}}
27. ^{{OEIS2C|A082695}}
28. ^{{OEIS2C|A166928}}
29. ^{{OEIS2C|A175640}}
30. ^ 
31. ^{{OEIS2C|A065485}}
32. ^{{OEIS2C|A163973}}
33. ^"Bags of Talent, a Touch of Panic, and a Bit of Luck: The Case of Non-Numerical Vague Quantifiers" from Linguista Pragensia, Nov. 2, 2010 {{webarchive|url=https://archive.is/20120731092211/http://versita.metapress.com/content/t98071387u726916/?p=1ad6a085630c432c94528c5548f5c2c4&pi=1 |date=2012-07-31 }}
34. ^[https://www.bostonglobe.com/ideas/2016/07/13/the-surprising-history-indefinite-hyperbolic-numerals/qYTKpkP9lyWVfItLXuTHdM/story.html Boston Globe, July 13, 2016: "The surprising history of indefinite hyperbolic numerals"]

Further reading

  • Kingdom of Infinite Number: A Field Guide by Bryan Bunch, W.H. Freeman & Company, 2001. {{isbn|0-7167-4447-3}}

External links

  • The Database of Number Correlations: 1 to 2000+
  • What's Special About This Number? A Zoology of Numbers: from 0 to 500
  • Name of a Number
  • See how to write big numbers
  • {{webarchive|url = https://web.archive.org/web/20101127194324/http://pages.prodigy.net/jhonig/bignum/indx.html|title = About big numbers|date = 27 November 2010}}
  • Robert P. Munafo's Large Numbers page
  • Different notations for big numbers – by Susan Stepney
  • Names for Large Numbers, in How Many? A Dictionary of Units of Measurement by Russ Rowlett
  • What's Special About This Number? (from 0 to 9999)
{{DEFAULTSORT:List Of Numbers}}

3 : Number-related lists|Mathematical tables|Numeral systems

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 12:05:28