词条 | Noisy channel model |
释义 |
The noisy channel model is a framework used in spell checkers, question answering, speech recognition, and machine translation. In this model, the goal is to find the intended word given a word where the letters have been scrambled in some manner. DefinitionGiven an alphabet , let be the set of all finite strings over . Let the dictionary of valid words be some subset of , i.e., . The noisy channel is the matrix , where is the intended word and is the scrambled word that was actually received. ExampleConsider the English alphabet . Some subset makes up the dictionary of valid English words. There are several mistakes that may occur while typing, including:
To construct the noisy channel matrix , we must consider the probability of each mistake, given the intended word ( for all and ). These probabilities may be gathered, for example, by considering the Levenshtein distance between and or by comparing the draft of an essay with one that has been manually edited for spelling. Error-correctionThe goal of the noisy channel model is to find the intended word given the scrambled word that was received. The decision function is a function that, given a scrambled word, returns the intended word. Methods of constructing a decision function include the maximum likelihood rule, the maximum a posteriori rule, and the minimum distance rule. In some cases, it may be better to accept the scrambled word as the intended word rather than attempt to find an intended word in the dictionary. For example, the word schönfinkeling may not be in the dictionary, but might in fact be the intended word. See also
References{{Refbegin}}
| last1 = Brill | first1 = Eric | last2 = Moore | first2 = Robert C. | title = An Improved Error Model for Noisy Channel Spelling Correction |date=Jan 2000 | journal = Proceedings of ACL 2000 | url = http://www.aclweb.org/anthology/P00-1037{{Refend}} 3 : Automatic identification and data capture|Computational linguistics|Statistical natural language processing |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。