请输入您要查询的百科知识:

 

词条 Nucleoside-phosphate kinase
释义

  1. Structure

  2. Mechanism

     Metal ion interaction  Conformational changes 

  3. Biological function

  4. Evolution

  5. References

{{enzyme
| Name = nucleoside phosphate kinase
| EC_number = 2.7.4.4
| CAS_number = 9026-50-0
| IUBMB_EC_number = 2/7/4/4
| GO_code = 0050145
| image =
| width =
| caption =
}}

In enzymology, a nucleoside-phosphate kinase ({{EC number|2.7.4.4}}) is an enzyme that catalyzes the chemical reaction[1]

ATP + nucleoside phosphate ADP + nucleoside diphosphate

Thus, the two substrates of this enzyme are ATP and nucleoside monophosphate, whereas its two products are ADP and nucleoside diphosphate.[2][3]

This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with a phosphate group as acceptor.[4] The systematic name of this enzyme class is ATP:nucleoside-phosphate phosphotransferase. This enzyme is also called NMP-kinase, or nucleoside-monophosphate kinase.

Structure

A number of crystal structures have been solved for this class of enzymes, revealing that they share a common ATP binding domain. This section of the enzyme is commonly referred to as the P-loop,[5] in reference to its interaction with the phosphoryl groups on ATP. This binding domain also consists of a β sheet flanked by α helices.

The [P-loop] typically has the amino acid sequence of Gly-X-X-X-X-Gly-Lys.[6] Similar sequences are found in many other nucleotide-binding proteins.

Mechanism

Metal ion interaction

To allow for interaction with this class of enzymes, ATP must first bind to a metal ion such as magnesium or manganese.[8] The metal ion forms a complex with the phosphoryl-group, as well as several water molecules.[9] These water molecules then form hydrogen bonds to a conserved aspartate residue on the enzyme.[10]

The metal ion interaction facilitates binding by holding the ATP molecule in a position allowing for specific binding to the active site and by providing additional points for binding between the substrate and the enzyme. This increases the binding energy.

Conformational changes

Binding of ATP causes the P-loop to move, in turn making the lid domain lower and secure the ATP in place.[11][12] Nucleoside monophosphate binding induces further changes that render the enzyme catalytically capable of facilitating a transfer of the phosphoryl group from ATP to nucleoside monophosphate.[13]

The necessity of these conformational changes prevents the wasteful hydrolysis of ATP.

This enzyme mechanism is an example of catalysis by approximation: the nucleoside-phosphate kinase binds the substrates to bring them together in the correct position for the phosphoryl group to be transferred.

Biological function

Similar catalytic domains are present in a variety of proteins, including:

  • ATP synthase
  • Myosin, and other molecular motor proteins
  • G protein and other proteins involved in signal transduction
  • Helicases for unwinding DNA and RNA
  • Pyrimidine metabolism

Evolution

When a phylogenetic tree composed of members of the nucleoside-phosphate kinase family was made,[14] it showed that these enzymes had originally diverged from a common ancestor into long and short varieties. This first change was drastic – the three-dimensional structure of the lid domain changed significantly.

Following the evolution of long and short varieties of NMP-kinases, smaller changes in the amino acid sequences resulted in the differentiation of subcellular localization.

References

1. ^Boyer, P.D., Lardy, H. and Myrback, K. (Eds.), The Enzymes, 2nd ed., vol. 6, Academic Press, New York, 1962, p. 139-149.
2. ^{{cite journal |vauthors=AYENGAR P, GIBSON DM, SANADI DR | year = 1956 | title = Transphosphorylations between nucleoside phosphates | journal = Biochim. Biophys. Acta | volume = 21 | pages = 86–91 | pmid = 13363863 | doi = 10.1016/0006-3002(56)90096-8 | issue = 1 }}
3. ^{{cite journal |vauthors=LIEBERMAN I, KORNBERG A, SIMMS ES | year = 1955 | title = Enzymatic synthesis of nucleoside diphosphates and triphosphates | journal = J. Biol. Chem. | volume = 215 | pages = 429–40 | pmid = 14392176 | issue = 1 }}
4. ^{{cite journal |vauthors=HEPPEL LA, STROMINGER JL, MAXWELL ES | year = 1959 | title = Nucleoside monophosphate kinases. II. Transphosphorylation between adenosine monophosphate and nucleoside triphosphates | journal = Biochim. Biophys. Acta | volume = 32 | pages = 422–30 | pmid = 14401179 | doi = 10.1016/0006-3002(59)90615-8 }}
5. ^{{cite journal |last1= Dreusicke |first1= D.|last2=Schulz |first2= G.E. |year= 1986 |title= The glycine-rich loop of adenylate kinase forms a giant anion hole |journal= FEBS Lett. |volume= 208 |issue= 2 |pages= 301–304 |publisher= |pmid=3023140 |doi= 10.1016/0014-5793(86)81037-7|url= }}
6. ^{{cite journal |last1=Byeon |first1= L. |last2= Shi |first2= Z. |last3= Tsai |first3= M.D. |year= 1995 |title= Mechanism of adenylate kinase. The "essential lysine" helps to orient the phosphates and the active site residues to proper conformations |journal= Biochemistry |volume= 34|issue= 10 |pages= 3172–3182 |pmid= 7880812 |publisher= |doi= 10.1021/bi00010a006|url= }}
7. ^{{cite journal |last1= Muller |first1= C.W.|last2= Schlauderer |first2= G.J.|last3= Reinstein |first3= J. |last4= Schulz |first4= G.E. |year= 1996 |title= Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. |journal= Structure |volume= 4 |issue= 2 |pages= 147–156 |publisher= |doi=10.2210/pdb4ake/pdb |pmid=8805521 |url= }}
8. ^{{cite book |last1= Berg |first1= J.M. |last2 = Tymoczko |first2= J.L. |last3= Stryer |first3= L. |title= Biochemistry |url= https://www.ncbi.nlm.nih.gov/books/NBK22514/ |accessdate= 2016-01-08 |year= 2002 |publisher= W H Freeman|location= New York|isbn= 0-7167-3051-0 |page= |pages=}}
9. ^{{cite journal |last1= Krishnamurthy |first1=H. |last2= Lou |first2= H. |last3=Kimple |first3= A. |last4= Vieille |first4=C. |last5= Cukier |first5=R.I. |year= 2005 |title= Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates |journal= Proteins |volume= 58 |issue= 1 |pages= 88–100 |pmid= 15521058 |publisher= |doi= 10.1002/prot.20301|url= }}
10. ^{{cite journal |last1= Pai |first1= E.F. |last2= Sachseneheimer |first2= W.|last3= Schirmer |first3=R.H. |last4=Schulz |first4=G.E. |year=1996 |title= Substrate positions and induced-fit in crystalline adenylate kinase |journal= J. Mol. Biol. |volume=114 |issue=1 |pages=37–45 |publisher= |pmid= 198550|doi= 10.1016/0022-2836(77)90281-9 |url= }}
11. ^{{cite journal |last1=Muller |first1=C.W. |last2=Schulz |first2=G.E. |year=1992 |title=Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A at 1.9 A resolution. A model for a catalytic transition state. |journal=J. Mol. Biol. |volume=224 |issue=1 |pages=159–177 |publisher= |doi=10.2210/pdb1ake/pdb |pmid=1548697 |url= }}
12. ^{{cite journal |last1=Schlauderer |first1=G.J. |last2=Proba |first2=K. |last3=Schulz |first3=G.E. |year=1996 |title= Structure of a mutant adenylate kinase ligated with an ATP-analogue showing domain closure over ATP |journal= J. Mol. Biol. |volume= 256 |issue=2 |pages=223–227 |publisher= |doi= 10.1006/jmbi.1996.0080|pmid= 8594191 |url= }}
13. ^{{cite journal |last1= Vonrhein |first1= C. |last2= Schlauderer |first2= G.J. |last3= Schulz |first3= G.E. |year=1995 |title= Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases |journal= Structure |volume=3 |issue=5 |pages= 483–490 |publisher= |doi= 10.1016/s0969-2126(01)00181-2|pmid=7663945 |url= }}
14. ^{{cite journal |last1= Fukami-Kobayashi |first1= Kaoru |last2= Nosaka |first2= Michiko |last3= Nakazawa |first3= Atsushi |last4= Gō |first4=Mitiko |year= 1996 |title= Ancient Divergence of long and short isoforms of adenylate kinase molecular evolution of the nucleoside monophosphate kinase family |journal= FEBS Letters |volume= 385 |issue= 3|pages= 214–220 |publisher= |pmid =8647254 |doi= 10.1016/0014-5793(96)00367-5|url= }}
{{Kinases}}{{Enzymes}}{{Portal bar|Molecular and Cellular Biology|border=no}}

2 : EC 2.7.4|Enzymes of known structure

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 22:34:50