请输入您要查询的百科知识:

 

词条 Optogenetics
释义

  1. History

  2. Description

  3. Technique

  4. Issues

      Selective expression    Kinetics and synchronization    Excitation spectrum  

  5. Applications

     Identification of particular neurons and networks  Amygdala  Olfactory bulb  Nucleus accumbens  Prefrontal cortex  Heart  Spiral ganglion  Brainstem  Precise temporal control of interventions  Hippocampus   Cellular biology/cell signaling pathways    Photosensitive proteins utilized in various cell signaling pathways    Optogenetic temporal control of signals  

  6. References

  7. Further reading

  8. External links

Optogenetics ({{ety|gre|optikós|seen, visible}}) is a biological technique that involves the use of light to control cells in living tissue, typically neurons, that have been genetically modified to express light-sensitive ion channels. It is a neuromodulation method that uses a combination of techniques from optics and genetics to control and monitor the activities of individual neurons in living tissue—even within freely-moving animals—and to precisely measure these manipulation effects in real-time.[1] The key reagents used in optogenetics are light-sensitive proteins. Neuronal control is achieved using optogenetic actuators like channelrhodopsin, halorhodopsin, and archaerhodopsin, while optical recording of neuronal activities can be made with the help of optogenetic sensors for calcium (GCaMP), vesicular release (synapto-pHluorin), neurotransmitter (GluSnFRs), or membrane voltage (arc lightning, ASAP1).[2][3] Control (or recording) of activity is restricted to genetically defined neurons and performed in a spatiotemporal-specific manner by light.

In 2010, optogenetics was chosen as the "Method of the Year" across all fields of science and engineering by the interdisciplinary research journal Nature Methods.[4] At the same time, optogenetics was highlighted in the article on "Breakthroughs of the Decade" in the academic research journal Science.[5] These journals also referenced recent public-access general-interest video [https://www.youtube.com/watch?v=I64X7vHSHOE Method of the year video] and textual SciAm summaries of optogenetics.

History

The "far-fetched" possibility of using light for selectively controlling precise neural activity (action potential) patterns within subtypes of cells in the brain was thought of by Francis Crick in his Kuffler Lectures at the University of California in San Diego in 1999.[6] An earlier use of light to activate neurons was carried out by Richard Fork,[7] who demonstrated laser activation of neurons within intact tissue, although not in a genetically-targeted manner. The earliest genetically targeted method that used light to control rhodopsin-sensitized neurons was reported in January 2002, by Boris Zemelman and Gero Miesenböck, who employed Drosophila rhodopsin cultured mammalian neurons.[8] In 2003, Zemelman and Miesenböck developed a second method for light-dependent activation of neurons in which single inotropic channels TRPV1, TRPM8 and P2X2 were gated by photocaged ligands in response to light.[9] Beginning in 2004, the Kramer and Isacoff groups developed organic photoswitches or "reversibly caged" compounds in collaboration with the Trauner group that could interact with genetically introduced ion channels.[10][11] TRPV1 methodology, albeit without the illumination trigger, was subsequently used by several laboratories to alter feeding, locomotion and behavioral resilience in laboratory animals.[12][13][14] However, light-based approaches for altering neuronal activity were not applied outside the original laboratories, likely because the easier to employ channelrhodopsin was cloned soon thereafter.[15]

Peter Hegemann, studying the light response of green algae at the University of Regensburg, had discovered photocurrents that were too fast to be explained by the classic g-protein-coupled animal rhodopsins.[16] Teaming up with the electrophysiologist Georg Nagel at the Max Planck Institute in Frankfurt, they could demonstrate that a single gene from the alga Chlamydomonas produced large photocurents when expressed in the oocyte of a frog.[17] To identify expressing cells, they replaced the cytoplasmic tail of the algal protein with the fluorescent protein YFP, generating the first generally applicable optogenetic tool.[15]Zhuo-Hua Pan of Wayne State University, researching on restore sight to blindness, thought about using channelrhodopsin when it came out in late 2003. By February 2004, he was trying channelrhodopsin out in ganglion cells—the neurons in our eyes that connect directly to the brain—that he had cultured in a dish. Indeed, the transfected neurons became electrically active in response to light. In 2005, Zhuo-Hua Pan reported successful in-vivo transfection of channelrhodopsin in retinal ganglion cells of mice, and electrical responses to photostimulation in retinal slice culture[18]

In April 2005, Susana Lima and Miesenböck reported the first use of genetically-targeted P2X2 photostimulation to control the behaviour of an animal.[19] They showed that photostimulation of genetically circumscribed groups of neurons, such as those of the dopaminergic system, elicited characteristic behavioural changes in fruit flies.

In August 2005, Karl Deisseroth's laboratory in the Bioengineering Department at Stanford including graduate students Ed Boyden and Feng Zhang published the first demonstration of a single-component optogenetic system in cultured mammalian neurons,[20][21] using the channelrhodopsin-2(H134R)-eYFP construct from Nagel and Hegemann.[15]

The groups of Gottschalk and Nagel were first to use channelrhodopsin-2 for controlling neuronal activity in an intact animal, showing that motor patterns in the roundworm Caenorhabditis elegans could be evoked by light stimulation of genetically selected neural circuits (published in December 2005).[22] In mice, controlled expression of optogenetic tools is often achieved with cell-type-specific Cre/loxP methods developed for neuroscience by Joe Z. Tsien back in the 1990s[23] to activate or inhibit specific brain regions and cell-types in vivo.[24]

The primary tools for optogenetic recordings have been genetically encoded calcium indicators (GECIs). The first GECI to be used to image activity in an animal was cameleon, designed by Atsushi Miyawaki, Roger Tsien and coworkers.[25] Cameleon was first used successfully in an animal by Rex Kerr, William Schafer and coworkers to record from neurons and muscle cells of the nematode C. elegans.[26] Cameleon was subsequently used to record neural activity in flies[27] and zebrafish.[28] In mammals, the first GECI to be used in vivo was GCaMP,[29] first developed by Nakai and coworkers.[30] GCaMP has undergone numerous improvements, and GCaMP6[31] in particular has become widely used throughout neuroscience.

In 2010, Karl Deisseroth at Stanford University was awarded the inaugural HFSP Nakasone Award "for his pioneering work on the development of optogenetic methods for studying the function of neuronal networks underlying behavior". In 2012, Gero Miesenböck was awarded the InBev-Baillet Latour International Health Prize for "pioneering optogenetic approaches to manipulate neuronal activity and to control animal behaviour." In 2013, Ernst Bamberg, Ed Boyden, Karl Deisseroth, Peter Hegemann, Gero Miesenböck and Georg Nagel were awarded The Brain Prize for "their invention and refinement of optogenetics."[32][33] Karl Deisseroth was awarded the Else Kröner Fresenius Research Prize 2017 (4 million euro) for his "contributions to the understanding of the biological basis of psychiatric disorders".

Description

Optogenetics provides millisecond-scale temporal precision which allows the experimenter to keep pace with fast biological information processing (for example, in probing the causal role of specific action potential patterns in defined neurons). Indeed, to probe the neural code, optogenetics by definition must operate on the millisecond timescale to allow addition or deletion of precise activity patterns within specific cells in the brains of intact animals, including mammals (see Figure 1). By comparison, the temporal precision of traditional genetic manipulations (employed to probe the causal role of specific genes within cells, via "loss-of-function" or "gain of function" changes in these genes) is rather slow, from hours or days to months. It is important to also have fast readouts in optogenetics that can keep pace with the optical control. This can be done with electrical recordings ("optrodes") or with reporter proteins that are biosensors, where scientists have fused fluorescent proteins to detector proteins. An example of this is voltage-sensitive fluorescent protein (VSFP2).[36] Additionally, beyond its scientific impact optogenetics represents an important case study in the value of both ecological conservation (as many of the key tools of optogenetics arise from microbial organisms occupying specialized environmental niches), and in the importance of pure basic science as these opsins were studied over decades for their own sake by biophysicists and microbiologists, without involving consideration of their potential value in delivering insights into neuroscience and neuropsychiatric disease.[37]

Light-activated proteins: channels, pumps and enzymes

The hallmark of optogenetics therefore is introduction of fast light-activated channels, pumps, and enzymes that allow temporally precise manipulation of electrical and biochemical events while maintaining cell-type resolution through the use of specific targeting mechanisms. Among the microbial opsins which can be used to investigate the function of neural systems are the channelrhodopsins (ChR2, ChR1, VChR1, and SFOs) to excite neurons and anion-conducting channelrhodopsins for light-induced inhibition. Indirectly light-controlled potassium channels have recently been engineered to prevent action potential generation in neurons during blue light illumination.[38][39] Light-driven ion pumps are also used to inhibit neuronal activity, e.g. halorhodopsin (NpHR),[40] enhanced halorhodopsins (eNpHR2.0 and eNpHR3.0, see Figure 2),[41] archaerhodopsin (Arch), fungal opsins (Mac) and enhanced bacteriorhodopsin (eBR).[42]

Optogenetic control of well-defined biochemical events within behaving mammals is now also possible. Building on prior work fusing vertebrate opsins to specific G-protein coupled receptors[43] a family of chimeric single-component optogenetic tools was created that allowed researchers to manipulate within behaving mammals the concentration of defined intracellular messengers such as cAMP and IP3 in targeted cells.[44] Other biochemical approaches to optogenetics (crucially, with tools that displayed low activity in the dark) followed soon thereafter, when optical control over small GTPases and adenylyl cyclases was achieved in cultured cells using novel strategies from several different laboratories.[45][46][47][48][49] This emerging repertoire of optogenetic probes now allows cell-type-specific and temporally precise control of multiple axes of cellular function within intact animals.[50]

Hardware for light application

Another necessary factor is hardware (e.g. integrated fiberoptic and solid-state light sources) to allow specific cell types, even deep within the brain, to be controlled in freely behaving animals. Most commonly, the latter is now achieved using the fiberoptic-coupled diode technology introduced in 2007,[51][52][53] though to avoid use of implanted electrodes, researchers have engineered ways to inscribe a "window" made of zirconia that has been modified to be transparent and implanted in mice skulls, to allow optical waves to penetrate more deeply to stimulate or inhibit individual neurons.[54] To stimulate superficial brain areas such as the cerebral cortex, optical fibers or LEDs can be directly mounted to the skull of the animal. More deeply implanted optical fibers have been used to deliver light to deeper brain areas. Complementary to fiber-tethered approaches, completely wireless techniques have been developed utilizing wirelessly delivered power to headborne LEDs for unhindered study of complex behaviors in freely behaving organisms.[55]

Expression of optogenetic actuators

Optogenetics also necessarily includes the development of genetic targeting strategies such as cell-specific promoters or other customized conditionally-active viruses, to deliver the light-sensitive probes to specific populations of neurons in the brain of living animals (e.g. worms, fruit flies, mice, rats, and monkeys). In invertebrates such as worms and fruit flies some amount of all-trans-retinal (ATR) is supplemented with food. A key advantage of microbial opsins as noted above is that they are fully functional without the addition of exogenous co-factors in vertebrates.[53]

Technique

The technique of using optogenetics is flexible and adaptable to the experimenter's needs. For starters, experimenters genetically engineer a microbial opsin based on the gating properties (rate of excitability, refractory period, etc..) required for the experiment.

There is a challenge in introducing the microbial opsin, an optogenetic actuator, into a specific region of the organism in question. A rudimentary approach is to introduce an engineered viral vector that contains the optogenetic actuator gene attached to a recognizable promoter such as CAMKIIα. This allows for some level of specificity as cells that already contain and can translate the given promoter will be infected with the viral vector and hopefully express the optogenetic actuator gene.

Another approach is the creation of transgenic mice where the optogenetic actuator gene is introduced into mice zygotes with a given promoter, most commonly Thy1. Introduction of the optogenetic actuator at an early stage allows for a larger genetic code to be incorporated and as a result, increases the specificity of cells to be infected.

A third and rather novel approach that has been developed is creating transgenic mice with Cre recombinase, an enzyme that catalyzes recombination between two lox-P sites. Then by introducing an engineered viral vector containing the optogenetic actuator gene in between two lox-P sites, only the cells containing the Cre recombinase will express the microbial opsin. This last technique has allowed for multiple modified optogenetic actuators to be used without the need to create a whole line of transgenic animals every time a new microbial opsin is needed.

After the introduction and expression of the microbial opsin, depending on the type of analysis being performed, application of light can be placed at the terminal ends or the main region where the infected cells are situated. Light stimulation can be performed with a vast array of instruments from light emitting diodes (LEDs) or diode-pumped solid state (DPSS). These light sources are most commonly connected to a computer through a fiber optic cable. Recent advances include the advent of wireless head-mounted devices that also apply LED to targeted areas and as a result give the animal more freedom of mobility to reproduce in vivo results.[57][58]

Issues

Although already a powerful scientific tool, optogenetics, according to Doug Tischer & Orion D. Weiner of the University of California San Francisco, should be regarded as a "first-generation GFP" because of its immense potential for both utilization and optimization.[59] With that being said, the current approach to optogenetics is limited primarily by its versatility. Even within the field of Neuroscience where it is most potent, the technique is less robust on a subcellular level.[60]

Selective expression

One of the main problems of optogenetics is that not all the cells in question may express the microbial opsin gene at the same level. Thus, even illumination with a defined light intensity will have variable effects on individual cells. Optogenetic stimulation of neurons in the brain is even less controlled as the light intensity drops exponentially from the light source (e.g. implanted optical fiber).

Moreover, mathematical modelling shows that selective expression of opsin in specific cell types can dramatically alter the dynamical behavior of the neural circuitry. In particular, optogenetic stimulation that preferentially targets inhibitory cells can transform the excitability of the neural tissue from Type 1 — where neurons operate as integrators — to Type 2 where neurons operate as resonators.[61]

Type 1 excitable media sustain propagating waves of activity whereas Type 2 excitable media do not. The transformation from one to the other explains how constant optical stimulation of primate motor cortex elicits gamma-band (40–80 Hz) oscillations in the manner of a Type 2 excitable medium. Yet those same oscillations propagate far into the surrounding tissue in the manner of a Type 1 excitable medium.[62]

Nonetheless, it remains difficult to target opsin to defined subcellular compartments, e.g. the plasma membrane, synaptic vesicles, or mitochondria.[60][63] Restricting the opsin to specific regions of the plasma membrane such as dendrites, somata or axon terminals would provide a more robust understanding of neuronal circuitry.[60]

Kinetics and synchronization

An issue with channelrhodopsin-2 is that its gating properties don't mimic in vivo cation channels of cortical neurons. A solution to this issue with a protein's kinetic property is introduction of variants of channelrhodopsin-2 with more favorable kinetics.[55][56]

Another one of the technique's limitations is that light stimulation produces a synchronous activation of infected cells and this removes any individual cell properties of activation among the population affected. Therefore, it is difficult to understand how the cells in the population affected communicate with one another or how their phasic properties of activation may relate to the circuitry being observed.

Optogenetic activation has been combined with functional magnetic resonance imaging (ofMRI) to elucidate the connectome, a thorough map of the brain’s neural connections. The results, however, are limited by the general properties of fMRI.[60][64] The readouts from this neuroimaging procedure lack the spatial and temporal resolution appropriate for studying the densely packed and rapid-firing neuronal circuits.[64]

Excitation spectrum

The opsin proteins currently in use have absorption peaks across the visual spectrum, but remain considerable sensitivity to blue light.[60] This spectral overlap makes it very difficult to combine opsin activation with genenetically encoded indictors (GEVIs, GECIs, GluSnFR, synapto-pHluorin), most of which need blue light excitation. Opsins with infrared activation would, at a standard irradiance value, increase light penetration and augment resolution through reduction of light scattering.

Additional data indicates that the absorption spectra of organic dyes and fluorescent proteins, used in optogenetics applications, extends from around 250 nm to around 600 nm. Particular organic compounds used in discrete portions of this range include: retinals, flavins, folates, p-coumaric acids, phytochrome chromophotes, cobalamins, and at least six fluorescent proteins including mOrange and mCherry.[65]

Applications

The field of optogenetics has furthered the fundamental scientific understanding of how specific cell types contribute to the function of biological tissues such as neural circuits in vivo (see references from the scientific literature below). Moreover, on the clinical side, optogenetics-driven research has led to insights into Parkinson's disease[66][67] and other neurological and psychiatric disorders. Indeed, optogenetics papers in 2009 have also provided insight into neural codes relevant to autism, Schizophrenia, drug abuse, anxiety, and depression.[42][68][69][70]

Identification of particular neurons and networks

Amygdala

Optogenetic approaches have been used to map neural circuits in the amygdala that contribute to fear conditioning.[71][72][73][74] One such example of a neural circuit is the connection made from the basolateral amygdala to the dorsal-medial prefrontal cortex where neuronal oscillations of 4 Hz have been observed in correlation to fear induced freezing behaviors in mice. Transgenic mice were introduced with channelrhodoposin-2 attached with a parvalbumin-Cre promoter that selectively infected interneurons located both in the basolateral amygdala and the dorsal-medial prefrontal cortex responsible for the 4 Hz oscillations. The interneurons were optically stimulated generating a freezing behavior and as a result provided evidence that these 4 Hz oscillations may be responsible for the basic fear response produced by the neuronal populations along the dorsal-medial prefrontal cortex and basolateral amygdala.[75]

Olfactory bulb

Optogenetic activation of olfactory sensory neurons was critical for demonstrating timing in odor processing[76] and for mechanism of neuromodulatory mediated olfactory guided behaviors (e.g. aggression, mating)[77] In addition, with the aid of optogenetics, evidence has been reproduced to show that the "afterimage" of odors is concentrated more centrally around the olfactory bulb rather than on the periphery where the olfactory receptor neurons would be located. Transgenic mice infected with channel-rhodopsin Thy1-ChR2, were stimulated with a 473 nm laser transcranially positioned over the dorsal section of the olfactory bulb. Longer photostimulation of mitral cells in the olfactory bulb led to observations of longer lasting neuronal activity in the region after the photostimulation had ceased, meaning the olfactory sensory system is able to undergo long term changes and recognize differences between old and new odors.[78]

Nucleus accumbens

Optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology have been integrated to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of the total population of accumbal neurons, these cholinergic cells are able to control the activity of the dopaminergic terminals that innervate medium spiny neurons (MSNs) in the nucleus accumbens.[79] These accumbal MSNs are known to be involved in the neural pathway through which cocaine exerts its effects, because decreasing cocaine-induced changes in the activity of these neurons has been shown to inhibit cocaine conditioning. The few cholinergic neurons present in the nucleus accumbens may prove viable targets for pharmacotherapy in the treatment of cocaine dependence[42]

Prefrontal cortex

In vivo and in vitro recordings (by the Cooper laboratory) of individual CAMKII AAV-ChR2 expressing pyramidal neurons within the prefrontal cortex demonstrated high fidelity action potential output with short pulses of blue light at 20 Hz (Figure 1).[80] The same group recorded complete green light-induced silencing of spontaneous activity in the same prefrontal cortical neuronal population expressing an AAV-NpHR vector (Figure 2).[80]Motor cortex

In vivo repeated optogenetic stimulation in healthy animals was able to eventually induce seizures[81]. This model has been termed optokindling.


Heart

Optogenetics was applied on atrial cardiomyocytes to end spiral wave arrhythmias, found to occur in atrial fibrillation, with light.[82] This method is still in the development stage. A recent study explored the possibilities of optogenetics as a method to correct for arrythmias and resynchronize cardiac pacing. The study introduced channelrhodopsin-2 into cardiomyocytes in ventricular areas of hearts of transgenic mice and performed in vitro studies of photostimulation on both open-cavity and closed-cavity mice. Photostimulation led to increased activation of cells and thus increased ventricular contractions resulting in increasing heart rates. In addition, this approach has been applied in cardiac resynchronization therapy (CRT) as a new biological pacemaker as a substitute for electrode based-CRT.[83] Lately, optogenetics has been used in the heart to defibrillate ventricular arrhythmias with local epicardial illumination,[84] a generalized whole heart illumination[85] or with customized stimulation patterns based on arrhythmogenic mechanisms in order to lower defibrillation energy.[86]

Spiral ganglion

Optogenetic stimulation of the spiral ganglion in deaf mice restored auditory activity.[87][88] Optogenetic application onto the cochlear region allows for the stimulation or inhibition of the spiral ganglion cells (SGN). In addition, due to the characteristics of the resting potentials of SGN's, different variants of the protein channelrhodopsin-2 have been employed such as Chronos and CatCh. Chronos and CatCh variants are particularly useful in that they have less time spent in their deactivated states, which allow for more activity with less bursts of blue light emitted. The result being that the LED producing the light would require less energy and the idea of cochlear prosthetics in association with photo-stimulation, would be more feasible.[89]

Brainstem

Optogenetic stimulation of a modified red-light excitable channelrhodopsin (ReaChR) expressed in the facial motor nucleus enabled minimally invasive activation of motoneurons effective in driving whisker movements in mice.[90] One novel study employed optogenetics on the Dorsal Ralphe Nucleus to both activate and inhibit dopaminergic release onto the ventral tegmental area. To produce activation transgenic mice were infected with channelrhodopsin-2 with a TH-Cre promoter and to produce inhibition the hyperpolarizing opsin NpHR was added onto the TH-Cre promoter. Results showed that optically activating dopaminergic neurons led to an increase in social interactions, and their inhibition decreased the need to socialize only after a period of isolation.[91]

Precise temporal control of interventions

The currently available optogenetic actuators allow for the accurate temporal control of the required intervention (i.e. inhibition or excitation of the target neurons) with precision routinely going down to the millisecond level. Therefore, experiments can now be devised where the light used for the intervention is triggered by a particular element of behavior (to inhibit the behavior), a particular unconditioned stimulus (to associate something to that stimulus) or a particular oscillatory event in the brain (to inhibit the event). This kind of approach has already been used in several brain regions:

Hippocampus

Sharp waves and ripple complexes (SWRs) are distinct high frequency oscillatory events in the hippocampus thought to play a role in memory formation and consolidation. These events can be readily detected by following the oscillatory cycles of the on-line recorded local field potential. In this way the onset of the event can be used as a trigger signal for a light flash that is guided back into the hippocampus to inhibit neurons specifically during the SWRs and also to optogenetically inhibit the oscillation itself[92] These kinds of "closed-loop" experiments are useful to study SWR complexes and their role in memory.

Cellular biology/cell signaling pathways

The optogenetic toolkit has proven pivotal for the field of neuroscience as it allows precise manipulation of neuronal excitability. Moreover, this technique has been shown to extend outside neurons to an increasing number of proteins and cellular functions.[59] Cellular scale modifications including manipulation of contractile forces relevant to cell migration, cell division and wound healing have been optogenetically manipulated.[93] The field has not developed to the point where processes crucial to cellular and developmental biology and cell signaling including protein localization, post-translational modification and GTP loading can be consistently controlled via optogenetics.[59]

Photosensitive proteins utilized in various cell signaling pathways

While this extension of optogenetics remains to be further investigated, there are various conceptual methodologies that may prove to immediately robust. There is a considerable body of literature outlining photosensitive proteins that have been utilized in cell signaling pathways.[59] CRY2, LOV, DRONPA and PHYB are photosynthetic proteins involved in inducible protein association whereby activation via light can induce/turn off a signaling cascade via recruitment of a signaling domain to its respective substrate.[94][95][96][97] LOV and PHYB are photosensitive proteins that engage in homodimerization and/or heterodimerization to recruit some DNA-modifying protein, translocate to the site of DNA and alter gene expression levels.[98][99][100] CRY2, a protein that inherently clusters when active, has been fused with signaling domains and subsequently photoactivated allowing for clustering-based activation.[101] Proteins LOV and Dronpa have also been adapted to cell signaling manipulation; exposure to light induces conformational changes in the photosensitive protein which can subsequently reveal a previously obscured signaling domain and/or activate a protein that was otherwise allosterically inhibited.[102][103] LOV has been fused to caspase 3 to produce a construct capable of inducing apoptosis upon light stimulation.[104]

Optogenetic temporal control of signals

A different set of signaling cascades respond to stimulus timing duration and dynamics.[105] Adaptive signaling pathways, for instance, adjust in accordance to the current level of the projected stimulus and display activity only when these levels change as opposed to responding to absolute levels of the input.[106] Stimulus dynamics also can trigger activity; treating PC12 cells with epidermal growth factor (inducing a transient profile of ERK activity) leads to cellular proliferation whereas introduction of nerve growth factor (inducing a sustained profile of ERK activity) is associated with a different cellular decision whereby the PC12 cells differentiate into neuron-like cells.[107] This discovery was guided pharmacologically but the finding was replicated utilizing optogenetic inputs instead.[108] This ability to optogenetically control signals for various time durations is being explored to elucidate various cell signaling pathways where there is not a strong enough understanding to utilize either drug/genetic manipulation.[59]

References

1. ^{{cite journal|doi=10.1523/JNEUROSCI.3863-06.2006|title=Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits|year=2006|last1=Deisseroth|first1=K.|last2=Feng|first2=G.|last3=Majewska|first3=A. K.|last4=Miesenbock|first4=G.|last5=Ting|first5=A.|last6=Schnitzer|first6=M. J.|journal=Journal of Neuroscience|volume=26|issue=41|pages=10380–6|pmid=17035522|pmc=2820367}}
2. ^{{Cite journal | last1 = Mancuso | first1 = J. J. | last2 = Kim | first2 = J. | last3 = Lee | first3 = S. | last4 = Tsuda | first4 = S. | last5 = Chow | first5 = N. B. H. | last6 = Augustine | first6 = G. J. | doi = 10.1113/expphysiol.2010.055731 | title = Optogenetic probing of functional brain circuitry | journal = Experimental Physiology | volume = 96 | issue = 1 | pages = 26–33 | year = 2010 | pmid = 21056968 | pmc = }}
3. ^{{cite journal|last1=Treger|first1=Jeremy|title=Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator|journal=eLife|date=2015|volume=4|page=e10482|doi=10.7554/eLife.10482|pmid=26599732|pmc=4658195}}
4. ^Primer on Optogenetics: {{Cite journal|doi=10.1038/nmeth.f.323|title=Optogenetics: Controlling cell function with light|year=2010|last1=Pastrana|first1=Erika|journal=Nature Methods|volume=8|pages=24–25|issue=1}}
Editorial: {{Cite journal|doi=10.1038/nmeth.f.321|title=Method of the Year 2010|year=2010|journal=Nature Methods|volume=8|pages=1|issue=1}}
Commentary: {{Cite journal|doi=10.1038/nmeth.f.324|title=Optogenetics|year=2010|last1=Deisseroth|first1=Karl|journal=Nature Methods|volume=8|pages=26–9|pmid=21191368|issue=1}}
5. ^{{Cite journal|pmid=21163985|year=2010|last1=News|first1=Staff|title=Insights of the decade. Stepping away from the trees for a look at the forest. Introduction|volume=330|issue=6011|pages=1612–3|doi=10.1126/science.330.6011.1612|journal=Science|bibcode = 2010Sci...330.1612. }}
6. ^{{cite journal |author=Crick, F.|title=The impact of molecular biology on neuroscience |journal=Philosophical Transactions of the Royal Society B |doi=10.1098/rstb.1999.0541 |volume=354 |issue=1392 |pages=2021–25 |date=December 1999 |pmid=10670022 |pmc=1692710}}
7. ^{{cite journal|last=Fork|first=R. L.|title=Laser stimulation of nerve cells in Aplysia|journal=Science|date=March 1971|volume=171|issue=3974|pages=907–8|doi=10.1126/science.171.3974.907|bibcode = 1971Sci...171..907F|pmid=5541653 }}
8. ^{{Cite journal|last1=Zemelman|first1=B. V.|last2=Lee|first2=G. A.|last3=Ng|first3=M.|last4=Miesenböck|first4=G.|year=2002|title=Selective photostimulation of genetically chARGed neurons|journal=Neuron|volume=33|issue=1|pages=15–22|doi=10.1016/S0896-6273(01)00574-8|pmid=11779476}}
9. ^{{cite journal|last1=Zemelman|first1=B. V.|last2=Nesnas|first2=N.|last3=Lee|first3=G.A.|last4=Miesenböck|first4=G.|year=2003|title=Photochemical gating of heterologous ion channels: Remote control over genetically designated populations of neurons|url=|journal=PNAS|volume=100|issue=3|pages=1352–7|doi=10.1073/pnas.242738899|pmid=12540832|pmc=298776|bibcode=2003PNAS..100.1352Z}}
10. ^{{cite journal|last=Banghart|first=M|author2=Borges, K |author3=Isacoff, E |author4= Trauner, R. H. |title=Light-activated ion channels for remote control of neuronal firing|journal=Nature Neuroscience|date=21 November 2004|volume=7|pages=1381–1386|doi=10.1038/nn1356|issue=12|pmid=15558062|pmc=1447674}}
11. ^{{cite journal|last=Volgraf|first=M.|author2=Gorostiza, P. |author3=Numano, R. |author4=Kramer, R. H. |author5= Isacoff, E. Y. |title=Allosteric control of an ionotropic glutamate receptor with an optical switch|journal=Nature Chemical Biology|date=11 December 2005|volume=2|pages=47–52|doi=10.1038/nchembio756|issue=1|pmid=16408092|pmc=1447676}}
12. ^{{cite journal|title= Genetic control of neuronal activity in mice conditionally expressing TRPV1 | doi=10.1038/nmeth.1190|volume=5|issue= 4 |journal=Nature Methods|pmid=18327266|pmc=3127246|year=2008|pages=299–302 | last1 = Arenkiel | first1 = BR | last2 = Klein | first2 = ME | last3 = Davison | first3 = IG | last4 = Katz | first4 = LC | last5 = Ehlers | first5 = MD}}
13. ^{{cite journal|title= Transient activation of specific neurons in mice by selective expression of the capsaicin receptor |journal= Nature Communications |volume= 3 |pages= 746 | doi=10.1038/ncomms1749|pmid = 22434189|pmc= 3592340 |bibcode=2012NatCo...3E.746G |year= 2012 |last1= Güler |first1= Ali D. |last2= Rainwater |first2= Aundrea |last3= Parker |first3= Jones G. |last4= Jones |first4= Graham L. |last5= Argilli |first5= Emanuela |last6= Arenkiel |first6= Benjamin R. |last7= Ehlers |first7= Michael D. |last8= Bonci |first8= Antonello |last9= Zweifel |first9= Larry S. |last10= Palmiter |first10= Richard D. }}
14. ^{{cite journal|title= Synaptic Modifications in the Medial Prefrontal Cortex in Susceptibility and Resilience to Stress|journal= Journal of Neuroscience|volume= 34|issue= 22|pages= 7485–7492|doi= 10.1523/JNEUROSCI.5294-13.2014|pmid = 24872553|year= 2014|last1= Wang|first1= M.|last2= Perova|first2= Z.|last3= Arenkiel|first3= B. R.|last4= Li|first4= B.}}
15. ^{{cite journal|last=Nagel|first=G.|author2=Szellas, T. |author3=Huhn, W. |author4=Kateriya, S. |author5=Adeishvili, N. |author6=Berthold, P. |author7=Ollig, D. |author8=Hegemann, P. |author9= Bamberg, E. |title=Channelrhodopsin-2, a directly light-gated cation-selective membrane channel|journal=Proc Natl Acad Sci U S A|date=25 November 2003|volume=100|issue=24|pages=13940–5|doi=10.1073/pnas.1936192100|bibcode = 2003PNAS..10013940N|pmc=283525|pmid=14615590}}
16. ^{{Cite journal|last=Harz|first=Hartmann|last2=Hegemann|first2=Peter|date=1991-06-06|title=Rhodopsin-regulated calcium currents in Chlamydomonas|journal=Nature|language=en|volume=351|issue=6326|pages=489–491|doi=10.1038/351489a0|bibcode=1991Natur.351..489H}}
17. ^{{Cite journal|last=Nagel|first=Georg|last2=Ollig|first2=Doris|last3=Fuhrmann|first3=Markus|last4=Kateriya|first4=Suneel|last5=Musti|first5=Anna Maria|last6=Bamberg|first6=Ernst|last7=Hegemann|first7=Peter|date=2002-06-28|title=Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae|journal=Science|language=en|volume=296|issue=5577|pages=2395–2398|doi=10.1126/science.1072068|issn=0036-8075|pmid=12089443|bibcode=2002Sci...296.2395N}}
18. ^{{cite journal|last1=Bi|first1=Anding|last2=Cui|first2=Jinjuan|last3=Ma|first3=Yu-Ping|last4=Olshevskaya|first4=Elena|last5=Pu|first5=Mingliang|last6=Dizhoor|first6=Alexander M.|last7=Pan|first7=Zhuo-Hua|title=Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration|journal=Neuron|volume=50|issue=1|year=2006|pages=23–33|issn=0896-6273|doi=10.1016/j.neuron.2006.02.026|pmid=16600853|pmc=1459045}}
19. ^{{Cite journal | last1 = Lima | first1 = S. Q. | last2 = Miesenböck | first2 = G. | doi = 10.1016/j.cell.2005.02.004 | title = Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons | journal = Cell | volume = 121 | issue = 1 | pages = 141–152 | year = 2005 | pmid = 15820685 | pmc = }}
20. ^{{cite journal | last1 = Boyden | first1 = E. S. | last2 = Zhang | first2 = F. | last3 = Bamberg | first3 = E. | last4 = Nagel | first4 = G. | last5 = Deisseroth | first5 = K. | year = 2005 | title = Millisecond-timescale, genetically targeted optical control of neural activity | url = | journal = Nat. Neurosci. | volume = 8 | issue = 9| pages = 1263–8 | doi = 10.1038/nn1525 | pmid = 16116447 }}
21. ^{{cite journal|last=Li|first=X.|author2=Gutierrez, D. V. |author3=Hanson, M. G. |author4=Han, J. |author5=Mark, M. D. |author6=Chiel, H. |author7=Hegemann, P. |author8=Landmesser, L. T. |author9= Herlitze, S. |title=Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin|journal=Proc Natl Acad Sci U S A|date=14 October 2005|volume=102|issue=49|pages=17816–21|bibcode = 2005PNAS..10217816L |doi = 10.1073/pnas.0509030102|pmid=16306259|pmc=1292990}}
22. ^{{cite journal |author1=Nagel, G. |author2=Brauner, M. |author3=Liewald, J. F. |author4=Adeishvili, N. |author5=Bamberg, E. |author6=Gottschalk, A. |title=Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses |journal=Curr. Biol. |volume=15 |issue=24 |pages=2279–84 |date=December 2005 |pmid=16360690 |doi=10.1016/j.cub.2005.11.032 }}
23. ^{{cite journal | last1 = Tsien | first1 = JZ | display-authors = etal | date = Dec 1996 | title = Subregion- and cell type-restricted gene knockout in mouse brain | journal = Cell | volume = 87 | issue = 7| pages = 1317–26 | doi=10.1016/S0092-8674(00)81826-7 | pmid=8980237}}
24. ^{{cite journal | last1 = Tsien | first1 = JZ | year = 2016 | title = Cre-Lox Neurogenetics: 20 Years of Versatile Applications in Brain Research and Counting | journal = Front Genet | volume = 7 | issue = | page = 19 | doi = 10.3389/fgene.2016.00019 | pmid = 26925095 | pmc=4759636}}
25. ^{{Cite journal|title = Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin|journal = Nature|date = 1997-08-28|issn = 0028-0836|pmid = 9278050|pages = 882–887|volume = 388|issue = 6645|doi = 10.1038/42264|first = A.|last = Miyawaki|first2 = J.|last2 = Llopis|first3 = R.|last3 = Heim|first4 = J. M.|last4 = McCaffery|first5 = J. A.|last5 = Adams|first6 = M.|last6 = Ikura|first7 = R. Y.|last7 = Tsien}}
26. ^{{Cite journal|title = Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans|journal = Neuron|date = 2000-06-01|issn = 0896-6273|pmid = 10896155|pages = 583–594|volume = 26|issue = 3|first = R.|last = Kerr|first2 = V.|last2 = Lev-Ram|first3 = G.|last3 = Baird|first4 = P.|last4 = Vincent|first5 = R. Y.|last5 = Tsien|first6 = W. R.|last6 = Schafer|doi=10.1016/s0896-6273(00)81196-4}}
27. ^{{Cite journal|title = Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons|journal = Current Biology|date = 2002-10-29|issn = 0960-9822|pmid = 12419190|pages = 1877–1884|volume = 12|issue = 21|first = André|last = Fiala|first2 = Thomas|last2 = Spall|first3 = Sören|last3 = Diegelmann|first4 = Beate|last4 = Eisermann|first5 = Silke|last5 = Sachse|first6 = Jean-Marc|last6 = Devaud|first7 = Erich|last7 = Buchner|first8 = C. Giovanni|last8 = Galizia|doi=10.1016/s0960-9822(02)01239-3}}
28. ^{{Cite journal|title = Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator|journal = Journal of Neurophysiology|date = 2003-12-01|issn = 0022-3077|pmid = 12930818|pages = 3986–3997|volume = 90|issue = 6|doi = 10.1152/jn.00576.2003|first = Shin-ichi|last = Higashijima|first2 = Mark A.|last2 = Masino|first3 = Gail|last3 = Mandel|first4 = Joseph R.|last4 = Fetcho}}
29. ^{{Cite journal|title = Ca2+-sensing transgenic mice: postsynaptic signaling in smooth muscle|journal = The Journal of Biological Chemistry|date = 2004-05-14|issn = 0021-9258|pmid = 14990564|pages = 21461–21468|volume = 279|issue = 20|doi = 10.1074/jbc.M401084200|first = Guangju|last = Ji|first2 = Morris E.|last2 = Feldman|first3 = Ke-Yu|last3 = Deng|first4 = Kai Su|last4 = Greene|first5 = Jason|last5 = Wilson|first6 = Jane C.|last6 = Lee|first7 = Robyn C.|last7 = Johnston|first8 = Mark|last8 = Rishniw|first9 = Yvonne|last9 = Tallini}}
30. ^{{Cite journal|title = A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein|journal = Nature Biotechnology|date = 2001-02-01|issn = 1087-0156|pmid = 11175727|pages = 137–141|volume = 19|issue = 2|doi = 10.1038/84397|first = J.|last = Nakai|first2 = M.|last2 = Ohkura|first3 = K.|last3 = Imoto}}
31. ^{{Cite journal|title = Ultrasensitive fluorescent proteins for imaging neuronal activity|journal = Nature|date = 2013-07-18|issn = 1476-4687|pmc = 3777791|pmid = 23868258|pages = 295–300|volume = 499|issue = 7458|doi = 10.1038/nature12354|first = Tsai-Wen|last = Chen|first2 = Trevor J.|last2 = Wardill|first3 = Yi|last3 = Sun|first4 = Stefan R.|last4 = Pulver|first5 = Sabine L.|last5 = Renninger|first6 = Amy|last6 = Baohan|first7 = Eric R.|last7 = Schreiter|first8 = Rex A.|last8 = Kerr|first9 = Michael B.|last9 = Orger|bibcode = 2013Natur.499..295C}}
32. ^{{cite web|title=The Brain Prize 2013|url=http://www.thebrainprize.org/flx/prize_winners/|accessdate=3 October 2013}}
33. ^{{cite journal |author1=Reiner, A. |author2=Isacoff, E.Y. |title=The Brain Prize 2013: the optogenetics revolution. |journal=Trends Neurosci. |volume=36 |issue=10 |pages=557–60 |date=October 2013 |doi=10.1016/j.tins.2013.08.005 |pmid=24054067}}
34. ^{{Cite journal | last1 = Husson | first1 = S. J. | last2 = Liewald | first2 = J. F. | last3 = Schultheis | first3 = C. | last4 = Stirman | first4 = J. N. | last5 = Lu | first5 = H. | last6 = Gottschalk | first6 = A. | editor1-last = Samuel | editor1-first = Aravinthan | title = Microbial Light-Activatable Proton Pumps as Neuronal Inhibitors to Functionally Dissect Neuronal Networks in C. Elegans | doi = 10.1371/journal.pone.0040937 | journal = PLoS ONE | volume = 7 | issue = 7 | pages = e40937 | year = 2012 | pmid = 22815873| pmc =3397962 | bibcode = 2012PLoSO...740937H}} {{open access}}
35. ^{{Cite journal | last1 = Liu | first1 = Y. | last2 = Lebeouf | first2 = B. | last3 = Guo | first3 = X. | last4 = Correa | first4 = P. A. | last5 = Gualberto | first5 = D. G. | last6 = Lints | first6 = R. | last7 = Garcia | first7 = L. R. | editor1-last = Goodman | editor1-first = Miriam B | title = A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Caenorhabditis elegans Male Copulation | doi = 10.1371/journal.pgen.1001326 | journal = PLoS Genetics | volume = 7 | issue = 3 | pages = e1001326 | year = 2011 | pmid = 21423722 | pmc =3053324 }} {{open access}}
36. ^{{cite journal | last1 = Akemann | first1 = W | last2 = Mutoh | first2 = H | last3 = Perron | first3 = A | last4 = Park | first4 = YK | last5 = Iwamoto | first5 = Y | last6 = Knöpfel | first6 = T | year = 2012 | title = Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein | journal = J Neurophysiol | volume = 108 | issue = 8| pages = 2323–37 | doi = 10.1152/jn.00452.2012 | pmid = 22815406 }}
37. ^{{Cite news|url=https://www.scientificamerican.com/article/optogenetics-controlling/|title=Optogenetics: Controlling the Brain with Light [Extended Version]|last=Deisseroth|first=Karl|newspaper=Scientific American|access-date=2016-11-28}}
38. ^{{Cite journal|last=Beck|first=Sebastian|last2=Yu-Strzelczyk|first2=Jing|last3=Pauls|first3=Dennis|last4=Constantin|first4=Oana M.|last5=Gee|first5=Christine E.|last6=Ehmann|first6=Nadine|last7=Kittel|first7=Robert J.|last8=Nagel|first8=Georg|last9=Gao|first9=Shiqiang|date=2018|title=Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition|journal=Frontiers in Neuroscience|language=English|volume=12|pages=643|doi=10.3389/fnins.2018.00643|pmid=30333716|pmc=6176052|issn=1662-453X}}
39. ^{{Cite journal|last=Andrea Bernal Sierra|first=Yinth|last2=Rost|first2=Benjamin|last3=Oldani|first3=Silvia|last4=Schneider-Warme|first4=Franziska|last5=Seifert|first5=Reinhard|last6=Schmitz|first6=Dietmar|last7=Hegemann|first7=Peter|date=November 5, 2018|title=Potassium channel-based two component optogenetic tool for silencing of excitable cells|journal=Biophysical Journal|volume=114|issue=3|pages=668a|doi=10.1016/j.bpj.2017.11.3607|issn=0006-3495}}
40. ^{{Cite journal | last1 = Zhao | first1 = S. | last2 = Cunha | first2 = C. | last3 = Zhang | first3 = F. | last4 = Liu | first4 = Q. | last5 = Gloss | first5 = B. | last6 = Deisseroth | first6 = K. | last7 = Augustine | first7 = G. J. | last8 = Feng | first8 = G. | doi = 10.1007/s11068-008-9034-7 | title = Improved expression of halorhodopsin for light-induced silencing of neuronal activity | journal = Brain Cell Biology | volume = 36 | issue = 1–4 | pages = 141–154 | year = 2008 | pmid = 18931914 | pmc =3057022 }}
41. ^{{Cite journal | last1 = Gradinaru | first1 = V. | last2 = Thompson | first2 = K. R. | last3 = Deisseroth | first3 = K. | doi = 10.1007/s11068-008-9027-6 | title = ENpHR: A Natronomonas halorhodopsin enhanced for optogenetic applications | journal = Brain Cell Biology | volume = 36 | issue = 1–4 | pages = 129–139 | year = 2008 | pmid = 18677566 | pmc =2588488 }}
42. ^{{cite journal | last1 = Witten | first1 = I. B. | last2 = Lin | first2 = S. C. | last3 = Brodsky | first3 = M. | last4 = Prakash | first4 = R. | last5 = Diester | first5 = I. | last6 = Anikeeva | first6 = P. | last7 = Gradinaru | first7 = V. | last8 = Ramakrishnan | first8 = C. | last9 = Deisseroth | first9 = K. | year = 2010 | title = Cholinergic interneurons control local circuit activity and cocaine conditioning | url = | journal = Science | volume = 330 | issue = 6011| pages = 1677–81 | doi = 10.1126/science.1193771 | pmid = 21164015 | pmc=3142356| bibcode = 2010Sci...330.1677W }}
43. ^{{cite journal | last1 = Kim | first1 = J. M. | last2 = Hwa | first2 = J. | last3 = Garriga | first3 = P. | last4 = Reeves | first4 = P. J. | last5 = RajBhandary | first5 = U. L. | last6 = Khorana | first6 = H. G. | year = 2005 | title = Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops | url = | journal = Biochemistry | volume = 44 | issue = 7| pages = 2284–92 | doi = 10.1021/bi048328i | pmid = 15709741 }}
44. ^{{cite journal | last1 = Airan | first1 = R. D. | last2 = Thompson | first2 = K. R. | last3 = Fenno | first3 = L. E. | last4 = Bernstein | first4 = H. | last5 = Deisseroth | first5 = K. | year = 2009 | title = Temporally precise in vivo control of intracellular signalling | url = | journal = Nature | volume = 458 | issue = 7241| pages = 1025–9 | doi = 10.1038/nature07926 | pmid = 19295515 |bibcode = 2009Natur.458.1025A }}
45. ^{{cite journal | doi = 10.1038/nature08446 | pmid = 19749742 | pmc=2989900 | volume=461 | issue=7266 | title=Spatiotemporal control of cell signalling using a light-switchable protein interaction |date=October 2009 | journal=Nature | pages=997–1001|bibcode = 2009Natur.461..997L | last1 = Levskaya | first1 = Anselm | last2 = Weiner | first2 = Orion D. | last3 = Lim | first3 = Wendell A. | last4 = Voigt | first4 = Christopher A. }}
46. ^{{cite journal | doi = 10.1038/nature08241 | volume=461 | issue=7260 | title=A genetically encoded photoactivatable Rac controls the motility of living cells |date=September 2009 | journal=Nature | pages=104–8|bibcode = 2009Natur.461..104W | last1 = Wu | first1 = Yi I. | last2 = Frey | first2 = Daniel | last3 = Lungu | first3 = Oana I. | last4 = Jaehrig | first4 = Angelika | last5 = Schlichting | first5 = Ilme |authorlink5=Ilme Schlichting | last6 = Kuhlman | first6 = Brian | last7 = Hahn | first7 = Klaus M. |pmc=2766670 |pmid=19693014}}
47. ^{{cite journal | last1 = Yazawa | first1 = M. | last2 = Sadaghiani | first2 = A. M. | last3 = Hsueh | first3 = B. | last4 = Dolmetsch | first4 = R. E. | year = 2009 | title = Induction of protein-protein interactions in live cells using light | url = | journal = Nature Biotechnology | volume = 27 | issue = 10| pages = 941–5 | doi = 10.1038/nbt.1569 | pmid = 19801976 }}
48. ^{{cite journal | doi = 10.1074/jbc.M110.185496 | pmid = 21030594 | pmc=3020725 | volume=286 | issue=2 | title=Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa |date=January 2011 | journal=J. Biol. Chem. | pages=1181–8 | last1 = Stierl | first1 = M. | last2 = Stumpf | first2 = P. | last3 = Udwari | first3 = D. | last4 = Gueta | first4 = R. | last5 = Hagedorn | first5 = R. | last6 = Losi | first6 = A. | last7 = Gartner | first7 = W. | last8 = Petereit | first8 = L. | last9 = Efetova | first9 = M.| last10 = Schwarzel | first10 = M. | last11 = Oertner | first11 = T. G. | last12 = Nagel | first12 = G. | last13 = Hegemann | first13 = P. | display-authors = 8 }}
49. ^{{cite journal | doi = 10.1074/jbc.M110.177600 | pmid = 21030591 | pmc=3009876 | volume=285 | issue=53 | title=Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications |date=December 2010 | journal=J. Biol. Chem. | pages=41501–8 | last1 = Ryu | first1 = M.-H. | last2 = Moskvin | first2 = O. V. | last3 = Siltberg-Liberles | first3 = J. | last4 = Gomelsky | first4 = M.}}
50. ^{{cite journal | last1 = Lerner | first1 = TN | last2 = Ye | first2 = L | last3 = Deisseroth | first3 = K | year = 2016 | title = Communication in Neural Circuits: Tools, Opportunities, and Challenges | url = https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=26967281 | journal = Cell | volume = 164 | issue = 6| pages = 1136–50 | doi = 10.1016/j.cell.2016.02.027 | pmid = 26967281 | pmc = 5725393 }}
51. ^{{cite journal | doi = 10.1088/1741-2560/4/3/S02 | pmid = 17873414 | volume=4 | issue=3 | title=An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology |date=September 2007 | journal=J Neural Eng | pages=S143–56|bibcode = 2007JNEng...4S.143A | last1 = Aravanis | first1 = Alexander M | last2 = Wang | first2 = Li-Ping | last3 = Zhang | first3 = Feng | last4 = Meltzer | first4 = Leslie A | last5 = Mogri | first5 = Murtaza Z | last6 = Schneider | first6 = M Bret | last7 = Deisseroth | first7 = Karl }}. {{PMID|17873414}}
52. ^{{cite journal | doi = 10.1038/nature06310 | volume=450 | issue=7168 | title=Neural substrates of awakening probed with optogenetic control of hypocretin neurons |date=November 2007 | journal=Nature | pages=420–4|bibcode = 2007Natur.450..420A | last1 = Adamantidis | first1 = Antoine R. | last2 = Zhang | first2 = Feng | last3 = Aravanis | first3 = Alexander M. | last4 = Deisseroth | first4 = Karl | last5 = De Lecea | first5 = Luis |pmid=17943086}}
53. ^{{cite journal | last1 = Gradinaru | first1 = V. | last2 = Thompson | first2 = K. R. | last3 = Zhang | first3 = F. | last4 = Mogri | first4 = M. | year = 2007| title = Targeting and readout strategies for fast optical neural control in vitro and in vivo | url = | journal = J. Neurosci. | volume = 27 | issue = 52| pages = 14231–8 | doi = 10.1523/JNEUROSCI.3578-07.2007 | pmid = 18160630 | last5 = Kay | first5 = K. | last6 = Schneider | first6 = M. B. | last7 = Deisseroth | first7 = K. }}
54. ^{{cite journal |last1=Damestani |first1= Yasaman |last2= Reynolds|first2= Carissa L.|last3= Szu |first3= Jenny |last4= Hsu |first4= Mike S. |last5= Kodera |first5= Yasuhiro |last6= Binder |first6= Devin K. |last7= Park |first7= B. Hyle |last8= Garay |first8= Javier E. |last9= Rao |first9= Masaru P. |last10= Aguilar |first10= Guillermo |year=2013 |title=Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis |journal=Nanomedicine |volume= 9|issue= 8|pages= 1135–8|doi=10.1016/j.nano.2013.08.002 |pmid= 23969102 }} • Explained by {{cite web |url=http://www.latimes.com/science/sciencenow/la-sci-sn-window-brain-20130903,0,6788242.story |title=A window to the brain? It's here, says UC Riverside team |last=Mohan |first=Geoffrey |date=September 4, 2013 |website=Los Angeles Times |archiveurl= |archivedate= }}
55. ^{{cite journal | doi = 10.1088/1741-2560/8/4/046021 | pmid = 21701058 | title = A wirelessly powered and controlled device for optical neural control of freely-behaving animals | year = 2011 | last1 = Wentz | first1 = Christian T | last2 = Bernstein | first2 = Jacob G | last3 = Monahan | first3 = Patrick | last4 = Guerra | first4 = Alexander | last5 = Rodriguez | first5 = Alex | last6 = Boyden | first6 = Edward S | journal = Journal of Neural Engineering | volume = 8 | issue = 4 | pages = 046021 | pmc = 3151576 |bibcode = 2011JNEng...8d6021W }}
56. ^{{Cite journal|last=Pama|first=E. A. Claudia|last2=Colzato|first2=Lorenza S.|last3=Hommel|first3=Bernhard|date=2013-01-01|title=Optogenetics as a neuromodulation tool in cognitive neuroscience|journal=Cognition|volume=4|pages=610|doi=10.3389/fpsyg.2013.00610|pmc=3764402|pmid=24046763}}
57. ^{{Cite journal|last=Warden|first=Melissa R.|last2=Cardin|first2=Jessica A.|last3=Deisseroth|first3=Karl|date=2014-07-11|title=Optical Neural Interfaces|journal=Annual Review of Biomedical Engineering|volume=16|pages=103–129|doi=10.1146/annurev-bioeng-071813-104733|issn=1523-9829|pmc=4163158|pmid=25014785}}
58. ^{{Cite journal|last=Guru|first=Akash|last2=Post|first2=Ryan J|last3=Ho|first3=Yi-Yun|last4=Warden|first4=Melissa R|date=2015-07-25|title=Making Sense of Optogenetics|journal=International Journal of Neuropsychopharmacology|volume=18|issue=11|doi=10.1093/ijnp/pyv079|issn=1461-1457|pmc=4756725|pmid=26209858|pages=pyv079}}
59. ^{{Cite journal|last=Tischer|first=Doug|last2=Weiner|first2=Orion D.|date=2014-08-01|title=Illuminating cell signalling with optogenetic tools|journal=Nature Reviews Molecular Cell Biology|language=en|volume=15|issue=8|pages=551–558|doi=10.1038/nrm3837|issn=1471-0072|pmc=4145075|pmid=25027655}}
60. ^{{Cite web|url=https://www.sfn.org/~/media/SfN/Documents/Short%20Courses/2013%20Short%20Course%20I/SC1%20Deisseroth.ashx|title=Current Challenges in Optogenetics|last=Zalocusky|first=Kelly A|last2=Fenno|first2=Lief E|date=2013|website=Society for Neuroscience|archive-url=|archive-date=|dead-url=|access-date=|last3=Deisseroth|first3=Karl}}
61. ^{{Cite journal|last=Heitmann|first=Stewart|last2=Rule|first2=Michael|last3=Truccolo|first3=Wilson|last4=Ermentrout|first4=Bard|date=2017|title=Optogenetic stimulation shifts the excitability of cerebral cortex from Type I to Type II: Oscillation onset and wave propagation|journal=PLOS Computational Biology|volume=13|issue=1|pages=e1005349|doi=10.1371/journal.pcbi.1005349|pmid=28118355|pmc=5295702|issn=1553-7358|bibcode=2017PLSCB..13E5349H}}
62. ^{{Cite journal|last=Lu|first=Yao|last2=Truccolo|first2=Wilson|last3=Wagner|first3=Fabien B.|last4=Vargas-Irwin|first4=Carlos E.|last5=Ozden|first5=Ilker|last6=Zimmermann|first6=Jonas B.|last7=May|first7=Travis|last8=Agha|first8=Naubahar S.|last9=Wang|first9=Jing|last10=Nurmikko|first10=Arto V.|date=2016|title=Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex|journal=Journal of Neurophysiology|volume=113|issue=10|pages=3574–3587|doi=10.1152/jn.00792.2014|pmid=25761956|issn=1522-1598|pmc=4461886}}
63. ^{{Cite journal|last=Gradinaru|first=Viviana|last2=Thompson|first2=Kimberly R.|last3=Deisseroth|first3=Karl|date=2008-08-01|title=eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications|journal=Brain Cell Biology|volume=36|issue=1–4|pages=129–139|doi=10.1007/s11068-008-9027-6|issn=1559-7113|pmc=2588488|pmid=18677566}}
64. ^{{Cite journal|last=Leergaard|first=Trygve B.|last2=Hilgetag|first2=Claus C.|last3=Sporns|first3=Olaf|date=2012-05-01|title=Mapping the Connectome: Multi-Level Analysis of Brain Connectivity|journal=Frontiers in Neuroinformatics|volume=6|pages=14|doi=10.3389/fninf.2012.00014|issn=1662-5196|pmc=3340894|pmid=22557964}}
65. ^{{cite book |editors = Duarte FJ|title=Organic Lasers and Organic Photonics |publisher= Institute of Physics |location=London |year=2018 |pages= 13–1 to 13–114 | chapter = Organic dyes in optogenetics |isbn=978-0-7503-1570-8 |oclc= |doi= |accessdate= | author = Penzkofer A, Hegemann P, Kateriya S }}
66. ^{{Cite journal|last2=Freeze|first2=B. S.|last3=Parker|first3=P. R. L.|last4=Kay|first4=K.|last5=Thwin|first5=M. T.|last6=Deisseroth|first6=K.|last7=Kreitzer|first7=A. C.|year=2010|title=Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry|journal=Nature|volume=466|issue=7306|pages=622–626|doi=10.1038/nature09159|pmc=3552484|pmid=20613723|last1=Kravitz|first1=A. V.|bibcode=2010Natur.466..622K}}
67. ^{{Cite journal|last2=Mogri|first2=M.|last3=Thompson|first3=K. R.|last4=Henderson|first4=J. M.|last5=Deisseroth|first5=K.|year=2009|title=Optical Deconstruction of Parkinsonian Neural Circuitry|journal=Science|volume=324|issue=5925|pages=354–359|doi=10.1126/science.1167093|pmc=|pmid=19299587|last1=Gradinaru|first1=V.|bibcode=2009Sci...324..354G|citeseerx=10.1.1.368.668}}
68. ^{{cite journal|last2=Carlén|first2=M.|last3=Meletis|first3=K.|last4=Knoblich|first4=Ulf|last5=Zhang|first5=Feng|last6=Deisseroth|first6=Karl|last7=Tsai|first7=Li-Huei|last8=Moore|first8=Christopher I.|year=2009|title=(June 2009). "Driving fast-spiking cells induces gamma rhythm and controls sensory responses|url=|journal=Nature|volume=459|issue=7247|pages=663–7|bibcode=2009Natur.459..663C|doi=10.1038/nature08002|pmc=3655711|pmid=19396156|last1=Cardin|first1=J. A.}}
69. ^{{cite journal|last2=Zhang|first2=F.|last3=Yizhar|first3=O.|last4=Deisseroth|first4=K.|year=2009|title=Parvalbumin neurons and gamma rhythms enhance cortical circuit performance|journal=Nature|volume=459|issue=7247|pages=698–702|bibcode=2009Natur.459..698S|doi=10.1038/nature07991|pmid=19396159|last1=Sohal|first1=V. S.|pmc=3969859}}
70. ^{{cite journal|last2=Zhang|first2=F.|last3=Adamantidis|first3=A.|last4=Stuber|first4=G. D.|last5=Bonci|first5=A.|last6=De Lecea|first6=L.|last7=Deisseroth|first7=K.|year=2009|title=Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning|url=|journal=Science|volume=324|issue=5930|pages=1080–4|bibcode=2009Sci...324.1080T|doi=10.1126/science.1168878|pmid=19389999|pmc=5262197|last1=Tsai|first1=H.C.}}
71. ^{{Cite journal | last1 = Haubensak | first1 = W. | last2 = Kunwar | first2 = P. S. | last3 = Cai | first3 = H. | last4 = Ciocchi | first4 = S. | last5 = Wall | first5 = N. R. | last6 = Ponnusamy | first6 = R. | last7 = Biag | first7 = J. | last8 = Dong | first8 = H. W. | last9 = Deisseroth | first9 = K. | last10 = Callaway | first10 = E. M. | last11 = Fanselow | first11 = M. S. | last12 = Lüthi | first12 = A. | last13 = Anderson | first13 = D. J. | title = Genetic dissection of an amygdala microcircuit that gates conditioned fear | doi = 10.1038/nature09553 | journal = Nature | volume = 468 | issue = 7321 | pages = 270–276 | year = 2010 | pmid = 21068836 | pmc =3597095 | bibcode = 2010Natur.468..270H}}
72. ^{{Cite journal | last1 = Johansen | first1 = J. P. | last2 = Hamanaka | first2 = H. | last3 = Monfils | first3 = M. H. | last4 = Behnia | first4 = R. | last5 = Deisseroth | first5 = K. | last6 = Blair | first6 = H. T. | last7 = Ledoux | first7 = J. E. | doi = 10.1073/pnas.1002418107 | title = Optical activation of lateral amygdala pyramidal cells instructs associative fear learning | journal = Proceedings of the National Academy of Sciences | volume = 107 | issue = 28 | pages = 12692–12697 | year = 2010 | pmid = 20615999 | pmc =2906568 | bibcode = 2010PNAS..10712692J}}
73. ^{{cite journal |vauthors=Jasnow AM, Ehrlich DE, Choi DC, Dabrowska J, Bowers ME, McCullough KM, Rainnie DG, Ressler KJ |title=Thy1-expressing neurons in the basolateral amygdala may mediate fear inhibition |journal=J. Neurosci. |volume=33 |issue=25 |pages=10396–404 |year=2013 |pmid=23785152 |pmc=3685835 |doi=10.1523/JNEUROSCI.5539-12.2013 |url=}}
74. ^{{Cite journal | last1 = Dias | first1 = B. G. | last2 = Banerjee | first2 = S. B. | last3 = Goodman | first3 = J. V. | last4 = Ressler | first4 = K. J. | title = Towards new approaches to disorders of fear and anxiety | doi = 10.1016/j.conb.2013.01.013 | journal = Current Opinion in Neurobiology | volume = 23 | issue = 3 | pages = 346–352 | year = 2013 | pmid = 23402950 | pmc =3672317 }}
75. ^{{Cite journal|last=Karalis|first=Nikolaos|last2=Dejean|first2=Cyril|last3=Chaudun|first3=Fabrice|last4=Khoder|first4=Suzana|last5=Rozeske|first5=Robert R.|last6=Wurtz|first6=Hélène|last7=Bagur|first7=Sophie|last8=Benchenane|first8=Karim|last9=Sirota|first9=Anton|date=2016-04-01|title=4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior|journal=Nature Neuroscience|volume=19|issue=4|pages=605–612|doi=10.1038/nn.4251|issn=1546-1726|pmc=4843971|pmid=26878674}}
76. ^{{cite journal|last1=Shusterman|first1=R|last2=Smear|first2=MC|last3=Koulakov|first3=AA|last4=Rinberg|first4=D|title=Precise olfactory responses tile the sniff cycle.|journal=Nature Neuroscience|date=17 July 2011|volume=14|issue=8|pages=1039–44|pmid=21765422|doi=10.1038/nn.2877}}
77. ^{{cite journal | vauthors = Smith RS, Hu R, DeSouza A, Eberly CL, Krahe K, Chan W, Araneda RC | title = Differential Muscarinic Modulation in the Olfactory Bulb | journal = The Journal of Neuroscience | volume = 35 | issue = 30 | pages = 10773–85 | date = Jul 2015 | pmid = 26224860 | doi = 10.1523/JNEUROSCI.0099-15.2015 | pmc=4518052}}
78. ^{{Cite journal|last=Patterson|first=Michael Andrew|last2=Lagier|first2=Samuel|last3=Carleton|first3=Alan|date=2013-08-27|title=Odor representations in the olfactory bulb evolve after the first breath and persist as an odor afterimage|journal=Proceedings of the National Academy of Sciences|language=en|volume=110|issue=35|pages=E3340–E3349|doi=10.1073/pnas.1303873110|issn=0027-8424|pmc=3761593|pmid=23918364|bibcode=2013PNAS..110E3340P}}
79. ^{{Cite journal | last1 = Tecuapetla | first1 = F. | last2 = Patel | first2 = J. C. | last3 = Xenias | first3 = H. | last4 = English | first4 = D. | last5 = Tadros | first5 = I. | last6 = Shah | first6 = F. | last7 = Berlin | first7 = J. | last8 = Deisseroth | first8 = K. | last9 = Rice | first9 = M. E. | last10 = Tepper | first10 = J. M. | last11 = Koos | first11 = T. | doi = 10.1523/JNEUROSCI.0265-10.2010 | title = Glutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens | journal = Journal of Neuroscience | volume = 30 | issue = 20 | pages = 7105–7110 | year = 2010 | pmid = 20484653 | pmc = 3842465}}
80. ^Baratta M.V., Nakamura S, Dobelis P., Pomrenze M.B., Dolzani S.D. & Cooper D.C. (2012) Optogenetic control of genetically-targeted pyramidal neuron activity in prefrontal cortex. Nature Precedings April 2 doi=10.1038/npre.2012.7102.1 http://www.neuro-cloud.net/nature-precedings/baratta
81. ^{{Cite journal|last=Cela|first=Elvis|last2=McFarlan|first2=Amanda R.|last3=Chung|first3=Andrew J.|last4=Wang|first4=Taiji|last5=Chierzi|first5=Sabrina|last6=Murai|first6=Keith K.|last7=Sjöström|first7=P. Jesper|date=2019-03-27|title=An Optogenetic Kindling Model of Neocortical Epilepsy|url=https://www.nature.com/articles/s41598-019-41533-2|journal=Scientific Reports|volume=9|issue=1|doi=10.1038/s41598-019-41533-2}}
82. ^{{cite journal |vauthors=Bingen BO, Engels MC, Schalij MJ, Jangsangthong W, Neshati Z, Feola I, etal | title=Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. | journal=Cardiovasc Res | year= 2014 | volume= 104| issue= 1| pages= 194–205| pmid=25082848 | doi=10.1093/cvr/cvu179 | pmc= }}
83. ^{{Cite journal|last=Nussinovitch|first=Udi|last2=Gepstein|first2=Lior|title=Optogenetics for in vivo cardiac pacing and resynchronization therapies|journal=Nature Biotechnology|volume=33|issue=7|pages=750–754|doi=10.1038/nbt.3268|pmid=26098449|year=2015}}
84. ^{{cite journal|vauthors=Nyns EC, et al. | title=Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management.|journal=Eur Heart J| volume=38| issue=27| pages=2132–2136|date=2016|doi=10.1093/eurheartj/ehw574| pmid=28011703| pmc=5837774}}
85. ^{{cite journal|vauthors=Bruegmann T, et al. | title=Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations.|journal=J Clin Invest|date=2016|doi=10.1172/JCI88950| pmid=27617859|volume=126| issue=10|pages=3894–3904|pmc=5096832}}
86. ^{{cite journal|vauthors=Crocini C, et al. |title=Optogenetics design of mechanistically-based stimulation patterns for cardiac defibrillation.|journal=Sci Rep|date=2016|doi=10.1038/srep35628|pmid=27748433|pmc=5066272|volume=6|pages=35628|bibcode=2016NatSR...635628C}}
87. ^{{cite journal | last1 = Hernandez | first1 = Victor H. | display-authors = etal | year = 2014 | title = Optogenetic stimulation of the auditory pathway | journal = J Clin Invest | volume = 124 | issue = 3| pages = 1114–1129 | doi = 10.1172/JCI69050 | pmid=24509078 | pmc=3934189}}
88. ^{{cite journal |vauthors = Mager T, Lopez de la Morena D, Senn V, Schlotte J, D'Errico A, Feldbauer K, Wrobel C, Jung S, Bodensiek K, Rankovic V, Browne L, Huet A, Jüttner J, Wood PG, Letzkus JJ, Moser T, Bamberg E | title = High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics | journal = Nat Commun | volume = 9 | issue = 1 | pages = 1750 |date=May 2018 | pmid = 29717130 | pmc = 5931537 | doi = 10.1038/s41467-018-04146-3| bibcode = 2018NatCo...9.1750M }}
89. ^{{Cite journal|last=Moser|first=Tobias|title=Optogenetic stimulation of the auditory pathway for research and future prosthetics|journal=Current Opinion in Neurobiology|volume=34|pages=29–36|doi=10.1016/j.conb.2015.01.004|pmid=25637880|year=2015}}
90. ^{{cite journal|first1=JY|last1=Lin|first2=PM|last2=Knutsen|first3=A|last3=Muller|first4=D|last4=Kleinfeld|first5=RY|last5=Tsien|title=ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation|journal=Nature Neuroscience|year=2013|volume=16|issue=10|pages=1499–1508|doi=10.1038/nn.3502|pmid=23995068|pmc=3793847}}
91. ^{{Cite journal|last=Matthews|first=Gillian A.|last2=Nieh|first2=Edward H.|last3=Vander Weele|first3=Caitlin M.|last4=Halbert|first4=Sarah A.|last5=Pradhan|first5=Roma V.|last6=Yosafat|first6=Ariella S.|last7=Glober|first7=Gordon F.|last8=Izadmehr|first8=Ehsan M.|last9=Thomas|first9=Rain E.|date=2016-02-11|title=Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation|journal=Cell|volume=164|issue=4|pages=617–631|doi=10.1016/j.cell.2015.12.040|issn=1097-4172|pmc=4752823|pmid=26871628}}
92. ^{{cite journal | vauthors = Kovacs KA, O'Neill J, Schoenenberger P, Penttonen M, Ranguel Guerrero DK, Csicsvari J | title = Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus | journal = PLOS ONE | date = 19 Nov 2016 | pmid = 27760158 | doi = 10.1371/journal.pone.0164675 | volume=11 | issue = 10 | pmc=5070819 | pages=e0164675| bibcode=2016PLoSO..1164675K }}
93. ^{{Cite journal|last=Valon|first=Léo|last2=Marín-Llauradó|first2=Ariadna|last3=Wyatt|first3=Thomas|last4=Charras|first4=Guillaume|last5=Trepat|first5=Xavier|date=2017-02-10|title=Optogenetic control of cellular forces and mechanotransduction|journal=Nature Communications|volume=8|doi=10.1038/ncomms14396|issn=2041-1723|pmc=5309899|pmid=28186127|page=14396|bibcode=2017NatCo...814396V}}
94. ^{{Cite journal|last=Strickland|first=Devin|last2=Lin|first2=Yuan|last3=Wagner|first3=Elizabeth|last4=Hope|first4=C. Matthew|last5=Zayner|first5=Josiah|last6=Antoniou|first6=Chloe|last7=Sosnick|first7=Tobin R.|last8=Weiss|first8=Eric L.|last9=Glotzer|first9=Michael|date=2012-03-04|title=TULIPs: tunable, light-controlled interacting protein tags for cell biology|journal=Nature Methods|volume=9|issue=4|pages=379–384|doi=10.1038/nmeth.1904|issn=1548-7105|pmc=3444151|pmid=22388287}}
95. ^{{Cite journal|last=Idevall-Hagren|first=Olof|last2=Dickson|first2=Eamonn J.|last3=Hille|first3=Bertil|last4=Toomre|first4=Derek K.|last5=De Camilli|first5=Pietro|date=2012-08-28|title=Optogenetic control of phosphoinositide metabolism|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=109|issue=35|pages=E2316–2323|doi=10.1073/pnas.1211305109|issn=1091-6490|pmc=3435206|pmid=22847441|bibcode=2012PNAS..109E2316I}}
96. ^{{Cite journal|last=Leung|first=Daisy W.|last2=Otomo|first2=Chinatsu|last3=Chory|first3=Joanne|last4=Rosen|first4=Michael K.|date=2008-09-02|title=Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=105|issue=35|pages=12797–12802|doi=10.1073/pnas.0801232105|issn=1091-6490|pmc=2525560|pmid=18728185|bibcode=2008PNAS..10512797L}}
97. ^{{Cite journal|last=Toettcher|first=Jared E.|last2=Gong|first2=Delquin|last3=Lim|first3=Wendell A.|last4=Weiner|first4=Orion D.|date=2011-09-11|title=Light-based feedback for controlling intracellular signaling dynamics|journal=Nature Methods|volume=8|issue=10|pages=837–839|doi=10.1038/nmeth.1700|issn=1548-7105|pmc=3184382|pmid=21909100}}
98. ^{{Cite journal|last=Lungu|first=Oana I.|last2=Hallett|first2=Ryan A.|last3=Choi|first3=Eun Jung|last4=Aiken|first4=Mary J.|last5=Hahn|first5=Klaus M.|last6=Kuhlman|first6=Brian|date=2012-04-20|title=Designing photoswitchable peptides using the AsLOV2 domain|journal=Chemistry & Biology|volume=19|issue=4|pages=507–517|doi=10.1016/j.chembiol.2012.02.006|issn=1879-1301|pmc=3334866|pmid=22520757}}
99. ^{{Cite journal|last=Konermann|first=Silvana|last2=Brigham|first2=Mark D.|last3=Trevino|first3=Alexandro E.|last4=Hsu|first4=Patrick D.|last5=Heidenreich|first5=Matthias|last6=Cong|first6=Le|last7=Platt|first7=Randall J.|last8=Scott|first8=David A.|last9=Church|first9=George M.|date=2013-08-22|title=Optical control of mammalian endogenous transcription and epigenetic states|journal=Nature|volume=500|issue=7463|pages=472–476|doi=10.1038/nature12466|issn=1476-4687|pmc=3856241|pmid=23877069|bibcode=2013Natur.500..472K}}
100. ^{{Cite journal|last=Shimizu-Sato|first=Sae|last2=Huq|first2=Enamul|last3=Tepperman|first3=James M.|last4=Quail|first4=Peter H.|date=2002-10-01|title=A light-switchable gene promoter system|journal=Nature Biotechnology|volume=20|issue=10|pages=1041–1044|doi=10.1038/nbt734|issn=1087-0156|pmid=12219076}}
101. ^{{Cite journal|last=Bugaj|first=Lukasz J.|last2=Choksi|first2=Atri T.|last3=Mesuda|first3=Colin K.|last4=Kane|first4=Ravi S.|last5=Schaffer|first5=David V.|date=2013-03-01|title=Optogenetic protein clustering and signaling activation in mammalian cells|journal=Nature Methods|volume=10|issue=3|pages=249–252|doi=10.1038/nmeth.2360|issn=1548-7105|pmid=23377377}}
102. ^{{Cite journal|last=Zhou|first=Xin X.|last2=Chung|first2=Hokyung K.|last3=Lam|first3=Amy J.|last4=Lin|first4=Michael Z.|date=2012-11-09|title=Optical control of protein activity by fluorescent protein domains|journal=Science|volume=338|issue=6108|pages=810–814|doi=10.1126/science.1226854|issn=1095-9203|pmc=3702057|pmid=23139335|bibcode=2012Sci...338..810Z}}
103. ^{{Cite journal|last=Wu|first=Yi I.|last2=Frey|first2=Daniel|last3=Lungu|first3=Oana I.|last4=Jaehrig|first4=Angelika|last5=Schlichting|first5=Ilme|last6=Kuhlman|first6=Brian|last7=Hahn|first7=Klaus M.|date=2009-09-03|title=A genetically encoded photoactivatable Rac controls the motility of living cells|journal=Nature|volume=461|issue=7260|pages=104–108|doi=10.1038/nature08241|issn=1476-4687|pmc=2766670|pmid=19693014|bibcode=2009Natur.461..104W}}
104. ^{{Cite journal|last=Smart|first=Ashley D.|last2=Pache|first2=Roland A.|last3=Thomsen|first3=Nathan D.|last4=Kortemme|first4=Tanja|last5=Davis|first5=Graeme W.|last6=Wells|first6=James A.|date=2017-09-11|title=Engineering a light-activated caspase-3 for precise ablation of neurons in vivo|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=114|issue=39|pages=E8174–E8183|doi=10.1073/pnas.1705064114|issn=1091-6490|pmc=5625904|pmid=28893998}}
105. ^{{Cite journal|last=Purvis|first=Jeremy E.|last2=Lahav|first2=Galit|date=2013-02-28|title=Encoding and decoding cellular information through signaling dynamics|journal=Cell|volume=152|issue=5|pages=945–956|doi=10.1016/j.cell.2013.02.005|issn=1097-4172|pmc=3707615|pmid=23452846}}
106. ^{{Cite journal|last=Shimizu|first=Thomas S.|last2=Tu|first2=Yuhai|last3=Berg|first3=Howard C.|date=2010-06-22|title=A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli|journal=Molecular Systems Biology|volume=6|pages=382|doi=10.1038/msb.2010.37|issn=1744-4292|pmc=2913400|pmid=20571531}}
107. ^{{Cite journal|last=Santos|first=Silvia D. M.|last2=Verveer|first2=Peter J.|last3=Bastiaens|first3=Philippe I. H.|date=2007-03-01|title=Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate|journal=Nature Cell Biology|language=en|volume=9|issue=3|pages=324–330|doi=10.1038/ncb1543|pmid=17310240|issn=1465-7392}}
108. ^{{Cite journal|last=Toettcher|first=Jared E.|last2=Weiner|first2=Orion D.|last3=Lim|first3=Wendell A.|date=2013-12-05|title=Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module|journal=Cell|volume=155|issue=6|pages=1422–1434|doi=10.1016/j.cell.2013.11.004|issn=1097-4172|pmc=3925772|pmid=24315106}}

Further reading

{{Further reading cleanup|date=August 2014}}
  • {{cite journal |author1=Airan, R. D. |author2=Hu, E. S. |author3=Vijaykumar, R. |author4=Roy, M. |author5=Meltzer, L. A. |author6=Deisseroth, K. |title=Integration of light-controlled neuronal firing and fast circuit imaging |journal=Current Opinion in Neurobiology |volume=17 |issue=5 |pages=587–92 |date=October 2007 |pmid=18093822 |doi=10.1016/j.conb.2007.11.003 |url=http://linkinghub.elsevier.com/retrieve/pii/S0959-4388(07)00121-3|ref=refAiran2007}}
  • {{cite journal |author=Alilain, W. J. |title=Light-induced rescue of breathing after spinal cord injury |journal=J. Neurosci. |volume=28 |issue=46 |pages=11862–70 |date=November 2008 |pmc=2615537 |doi=10.1523/JNEUROSCI.3378-08.2008 |pmid=19005051 |last2=Li |first2=X. |last3=Horn |first3=K. P. |display-authors=4 |last4=Dhingra |first4=R. |last5=Dick |first5=T. E. |last6=Herlitze |first6=S. |last7=Silver |first7=J.|ref=refAlilain2008}}
  • {{cite journal |author=Arenkiel, B. R. |title=In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2 |journal=Neuron |volume=54 |issue=2 |pages=205–18 |date=April 2007 |pmid=17442243 |pmc=3634585 |doi=10.1016/j.neuron.2007.03.005 |url=http://linkinghub.elsevier.com/retrieve/pii/S0896-6273(07)00183-3 |last2=Peca |first2=J. |last3=Davison |first3=I. G. |display-authors=4 |last4=Feliciano |first4=Catia |last5=Deisseroth |first5=Karl |last6=Augustine |first6=George J. |last7=Ehlers |first7=Michael D. |last8=Feng |first8=Guoping|ref=refArenkiel2007}}
  • {{cite journal |author1=Atasoy, D. |author2=Aponte, Y. |author3=Su, H. H. |author4=Sternson, S. M. |title=A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping |journal=J. Neurosci. |volume=28 |issue=28 |pages=7025–30 |date=July 2008 |pmid=18614669 |pmc=2593125 |doi=10.1523/JNEUROSCI.1954-08.2008 }}
  • {{cite journal |author1=Ayling, O. G. |author2=Harrison, T. C. |author3=Boyd, J. D. |author4=Goroshkov, A. |author5=Murphy, T. H. |title=Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice |journal=Nat. Methods |volume=6 |issue=3 |pages=219–24 |date=March 2009 |pmid=19219033 |doi=10.1038/nmeth.1303|ref=refAyling2009}}
  • {{cite journal|last=Berndt|first=A.|author2=Yizhar, O. |author3=Gunaydin, L. A. |author4=Hegemann, P. |author5= Deisseroth, K. |title=Bi-stable neural state switches|journal=Nature Neuroscience|date=February 2009|volume=12|issue=2|pages=229–34|pmid=19079251|doi=10.1038/nn.2247|ref=refBerndt2009}}
  • {{cite journal |author=Bi, A. |title=Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration |journal=Neuron |volume=50 |issue=1 |pages=23–33 |date=April 2006 |pmid=16600853 |pmc=1459045 |doi=10.1016/j.neuron.2006.02.026 |url=http://linkinghub.elsevier.com/retrieve/pii/S0896-6273(06)00176-0 |last2=Cui |first2=J. |last3=Ma |first3=Y. P. |display-authors=4 |last4=Olshevskaya |first4=Elena |last5=Pu |first5=Mingliang |last6=Dizhoor |first6=Alexander M. |last7=Pan |first7=Zhuo-Hua|ref=refBi2006}}
  • {{cite journal|last=Busskamp|first=V. |author2=Duebel, J. |author3=Balya, D. |author4=Fradot, M. |author5=Viney, T. J. |author6=Siegert, S. |author7=Groner, A. C. |author8=Cabuy, E. |author9=Forster, V. |author10=Seeliger, M. |author11=Biel, M. |author12=Humphries, P. |author13=Paques, M. |author14=Mohand-Said, S. |author15=Trono, D. |author16=Deisseroth, K. |author17=Sahel, J. A. |author18=Picaud, S. |author19=Roska, B.|title=Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa|journal=Science|date=2010-07-23|volume=329|issue=5990|pages=413–7|pmid=20576849|doi=10.1126/science.1190897|bibcode = 2010Sci...329..413B |ref=refBusskamp2010}}
  • {{cite journal|last=Cardin|first=J. A.|author2=Carlén, M. |author3=Meletis, K. |author4=Knoblich, U. |author5=Zhang, F. |author6=Deisseroth, K. |author7=Tsai, L. H. |author8= Moore, C. I. |title=Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2|journal=Nature Protocols|year=2010|volume=5|issue=2|pages=247–54|pmid=20134425|pmc=3655719|doi=10.1038/nprot.2009.228|ref=refCardin2010}}
  • {{cite journal|last=Carter|first=M. E.|author2=Adamantidis, A. |author3=Ohtsu, H. |author4=Deisseroth, K. |author5= de Lecea, L. |title=Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions|journal=Journal of Neuroscience|date=2009-09-02|volume=29|issue=35|pages=10939–49|pmid=19726652|doi=10.1523/JNEUROSCI.1205-09.2009|ref=refCarter2009|pmc=3849591}}
  • {{cite journal|last=Carter|first=M. E.|author2=Yizhar, O. |author3=Chikahisa, S. |author4=Nguyen, H. |author5=Adamantidis, A. |author6=Nishino, S. |author7=Deisseroth, K. |author8= de Lecea, L. |title=Tuning arousal with optogenetic modulation of locus coeruleus neurons|journal=Nature Neuroscience|date=December 2010|volume=13|issue=12|pages=1526–33|pmid=21037585|doi=10.1038/nn.2682|pmc=3174240|ref=refCarter2010}}
  • {{cite journal |author=Chow, B. Y. |title=High-performance genetically targetable optical neural silencing by light-driven proton pumps |journal=Nature |volume=463 |issue=7277 |pages=98–102 |date=January 2010|pmid=20054397 |pmc=2939492 |doi=10.1038/nature08652 |last2=Han |first2=X. |last3=Dobry |first3=A. S. |display-authors=4 |last4=Qian |first4=Xiaofeng |last5=Chuong |first5=Amy S. |last6=Li |first6=Mingjie |last7=Henninger |first7=Michael A. |last8=Belfort |first8=Gabriel M. |last9=Lin |first9=Yingxi|last10=Monahan |first10=Patrick E. |last11=Boyden |first11=Edward S. |bibcode = 2010Natur.463...98C |ref=refChow2010}}
  • {{cite journal |author1=Claridge-Chang, A. |author2=Roorda, R. D. |author3=Vrontou, E. |author4=Sjulson, L. |author5=Li, H. |author6=Hirsh, J. |author7=Miesenböck, G. |title=Writing memories with light-addressable reinforcement circuitry |journal=Cell |volume=139 |issue=2 |pages=405–15 |date=October 2009 |pmid=19837039 |pmc=3920284 |doi=10.1016/j.cell.2009.08.034 |url=http://linkinghub.elsevier.com/retrieve/pii/S0092-8674(08)00215-8|ref=refClaridge-Chang2009}}
  • {{cite journal |author1=Clyne, J. D. |author2=Miesenböck, G. |title=Sex-specific control and tuning of the pattern generator for courtship song in Drosophila |journal=Cell |volume=133 |issue=2 |pages=354–63 |date=April 2008 |pmid=18423205 |doi=10.1016/j.cell.2008.01.050|ref=refClyne2008}}
  • {{cite news|last=Deisseroth|first=Karl |title=Optogenetics: Controlling the Brain with Light |url=http://www.scientificamerican.com/article.cfm?id=optogenetics-controlling|ref=refDeisseroth 2010b}}
  • {{cite journal|last=Diester|first=I.|author2=Kaufman, M. T. |author3=Mogri, M. |author4=Pashaie, R. |author5=Goo, W. |author6=Yizhar, O. |author7=Ramakrishnan, C. |author8=Deisseroth, K. |author9= Shenoy, K. V. |title=An optogenetic toolbox designed for primates|journal=Nature Neuroscience|date=March 2011|volume=14|issue=3|pages=387–97|pmid=21278729|doi=10.1038/nn.2749|pmc=3150193|ref=refDiester2011}}
  • {{cite journal |author1=Douglass, A. D. |author2=Kraves, S. |author3=Deisseroth, K. |author4=Schier, A. F. |author5=Engert, F. |title=Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons |journal=Curr. Biol. |volume=18 |issue=15 |pages=1133–7 |date=August 2008 |pmid=18682213 |pmc=2891506 |doi=10.1016/j.cub.2008.06.077 |url=http://linkinghub.elsevier.com/retrieve/pii/S0960-9822(08)00959-7|ref=refDouglass2008}}
  • {{cite journal|last=Gradinaru|first=V. |author2=Zhang, F. |author3=Ramakrishnan, C. |author4=Mattis, J. |author5=Prakash, R. |author6=Diester, I. |author7=Goshen, I. |author8=Thompson, K. R. |author9= Deisseroth, K. |title=Molecular and cellular approaches for diversifying and extending optogenetics|journal=Cell|date=2010-04-02|volume=141|issue=1|pages=154–65|pmid=20303157|pmc=4160532 |doi=10.1016/j.cell.2010.02.037|ref=refGradinaru2010b}}
  • {{cite journal|last=Gourine|first=A. V. |author2=Kasymov, V. |author3=Marina, N. |author4=Tang, F. |author5=Figueiredo, M. F. |author6=Lane, S. |author7=Teschemacher, A. G. |author8=Spyer, K. M. |author9=Deisseroth, K. |author10= Kasparov, S. |title=Astrocytes control breathing through pH-dependent release of ATP|journal=Science|date=2010-07-30|volume=329|issue=5991|pages=571–5|pmid=20647426|doi=10.1126/science.1190721|pmc=3160742|bibcode = 2010Sci...329..571G |ref=refGourine2010}}
  • {{cite journal|last=Gunaydin|first=L. A. |author2=Yizhar, O. |author3=Berndt, A. |author4=Sohal, V. S. |author5=Deisseroth, K. |author6= Hegemann, P. |title=Ultrafast optogenetic control|journal=Nature Neuroscience|date=March 2010|volume=13|issue=3|pages=387–92|pmid=20081849|doi=10.1038/nn.2495|ref=refGunaydin2010}}
  • {{cite journal |author=Han, X.; Boyden E. S. |title=Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution |journal=PLoS ONE |volume=2 |issue=3 |pages=e299 |year=2007 |pmid=17375185 |pmc=1808431 |doi=10.1371/journal.pone.0000299 |editor1-last=Rustichini |editor1-first=Aldo|bibcode = 2007PLoSO...2..299H |last2=Boyden }} {{open access|ref=refHan2007}}
  • {{cite journal |author=Han, X. |title=Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain |journal=Neuron |volume=62 |issue=2 |pages=191–8 |date=April 2009 |pmid=19409264 |pmc=2830644 |doi=10.1016/j.neuron.2009.03.011 |url=http://linkinghub.elsevier.com/retrieve/pii/S0896-6273(09)00210-4 |last2=Qian |first2=X. |last3=Bernstein |first3=J. G. |display-authors=4 |last4=Zhou |first4=Hui-hui |last5=Franzesi |first5=Giovanni Talei |last6=Stern |first6=Patrick |last7=Bronson |first7=Roderick T. |last8=Graybiel |first8=Ann M. |last9=Desimone |first9=Robert|ref=refHan2009}}
  • {{cite journal |author=Hira, R. |title=Transcranial optogenetic stimulation for functional mapping of the motor cortex |journal=J. Neurosci. Methods |volume=179 |issue=2 |pages=258–63 |date=May 2009 |pmid=19428535 |doi=10.1016/j.jneumeth.2009.02.001 |url=http://linkinghub.elsevier.com/retrieve/pii/S0165-0270(09)00080-6 |last2=Honkura |first2=N. |last3=Noguchi |first3=J. |display-authors=4 |last4=Maruyama |first4=Yoshio |last5=Augustine |first5=George J. |last6=Kasai |first6=Haruo |last7=Matsuzaki |first7=Masanori|ref=refHira2009}}
  • {{cite journal|last=Hu|first=E. S.|author2=Airan, R. D. |author3=Vijaykumar, R. |author4= Deisseroth, K. |title=Brain circuit dynamics|journal=The American Journal of Psychiatry|date=July 2008|volume=165|issue=7|page=800|pmid=18593784|doi=10.1176/appi.ajp.2008.08050764|ref=refHu2008}}
  • {{cite journal |author=Huber, D. |title=Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice |journal=Nature |volume=451 |issue=7174 |pages=61–4 |date=January 2008 |pmid=18094685 |doi=10.1038/nature06445 |last2=Petreanu |first2=L. |last3=Ghitani |first3=N. |display-authors=4 |last4=Ranade |first4=Sachin |last5=Hromádka |first5=Tomáš |last6=Mainen |first6=Zach |last7=Svoboda |first7=Karel|bibcode = 2008Natur.451...61H |pmc=3425380|ref=refHuber2007}}
  • {{cite journal|last=Hwang|first=R. Y.|author2=Zhong, L. |author3=Xu, Y. |author4=Johnson, T. |author5=Zhang, F. |author6=Deisseroth, K. |author7= Tracey, W. D. |title=Nociceptive neurons protect Drosophila larvae from parasitoid wasps|journal=Current Biology|date=2007-12-18|volume=17|issue=24|pages=2105–16|pmid=18060782|doi=10.1016/j.cub.2007.11.029|pmc=2225350|ref=refHwang2007}}
  • {{cite journal |author=Kuhlman, S. J.; Huang, Z. J. |title=High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression |journal=PLoS ONE |volume=3 |issue=4 |pages=e2005 |year=2008 |pmid=18414675 |pmc=2289876 |doi=10.1371/journal.pone.0002005 |editor1-last=Wong |editor1-first=Rachel O. L.|bibcode = 2008PLoSO...3.2005K |last2=Huang }} {{open access|ref=refKuhlman2008}}
  • {{cite journal |author=Lagali, P. S. |title=Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration |journal=Nat. Neurosci. |volume=11 |issue=6 |pages=667–75 |date=June 2008 |pmid=18432197 |doi=10.1038/nn.2117 |last2=Balya |first2=D. |last3=Awatramani |first3=G. B. |display-authors=4 |last4=Münch |first4=Thomas A |last5=Kim |first5=Douglas S |last6=Busskamp |first6=Volker |last7=Cepko |first7=Constance L |last8=Roska |first8=Botond|ref=refLagali2008}}
  • {{cite journal|last=Lee |first=J. H. |author2=Durand, R. |author3=Gradinaru, V. |author4=Zhang, F. |author5=Goshen, I. |author6=Kim, D. S. |author7=Fenno, L. E. |author8=Ramakrishnan, C. |author9= Deisseroth, K. |title=Global and local fMRI signals driven by neurons defined optogenetically by type and wiring|journal=Nature|date=2010-06-10|volume=465|issue=7299|pages=788–92|pmid=20473285|doi=10.1038/nature09108|pmc=3177305|bibcode = 2010Natur.465..788L |ref=refLee2010}}
  • {{cite journal|last=Li |first=H. H. |author2=Roy, M. |author3=Kuscuoglu, U. |author4=Spencer, C. M. |author5=Halm, B. |author6=Harrison, K. C. |author7=Bayle, J. H. |author8=Splendore, A. |author9=Ding, F. |author10=Meltzer, L. A. |author11=Wright, E. |author12=Paylor, R. |author13=Deisseroth, K. |author14=Francke, U. |title=Induced chromosome deletions cause hypersociability and other features of Williams-Beuren syndrome in mice|journal=EMBO Molecular Medicine|date=April 2009|volume=1|issue=1|pages=50–65|pmid=20049703|doi=10.1002/emmm.200900003|pmc=3378107|ref=refLi2009}}
  • {{cite journal |author=Liewald, J. F. |title=Optogenetic analysis of synaptic function |journal=Nat. Methods |volume=5 |issue=10 |pages=895–902 |date=October 2008 |pmid=18794862 |doi=10.1038/nmeth.1252 |last2=Brauner |first2=M. |last3=Stephens |first3=G. J. |display-authors=4 |last4=Bouhours |first4=Magali |last5=Schultheis |first5=Christian |last6=Zhen |first6=Mei |last7=Gottschalk |first7=Alexander|ref=refLiewald2008}}
  • {{cite journal |author=Lima, S. Q.; Hromádka, T.; Znamenskiy, P.; Zador, A. M. |title=PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording |journal=PLoS ONE |volume=4 |issue=7 |pages=e6099 |year=2009 |pmid=19584920 |pmc=2702752 |doi=10.1371/journal.pone.0006099 |editor1-last=Nitabach |editor1-first=Michael N.|bibcode = 2009PLoSO...4.6099L |last2=Hromádka |last3=Znamenskiy |last4=Zador }} {{open access|ref=refLima2009}}
  • {{cite journal |author=Lin, J. Y.; Lin, M. Z.; Steinbach, P.; Tsien, R. Y. |title=Characterization of engineered channelrhodopsin variants with improved properties and kinetics |journal=Biophys. J. |volume=96 |issue=5 |pages=1803–14 |date=March 2009 |pmid=19254539 |pmc=2717302 |doi=10.1016/j.bpj.2008.11.034 |url=http://linkinghub.elsevier.com/retrieve/pii/S0006-3495(09)00016-2|bibcode = 2009BpJ....96.1803L |last2=Lin |last3=Steinbach |last4=Tsien |ref=refLin2008}}
  • {{cite journal |author=Liu, Q.; Hollopeter, G.; Jorgensen, E. M. |title=Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=106 |issue=26 |pages=10823–8 |date=June 2009 |pmid=19528650 |pmc=2705609 |doi=10.1073/pnas.0903570106 |bibcode = 2009PNAS..10610823L |last2=Hollopeter |last3=Jorgensen |ref=refLiu2009}}
  • {{cite journal|last=Llewellyn |first=M. E. |author2=Thompson, K. R. |author3=Deisseroth, K. |author4= Delp, S. L. |title=Orderly recruitment of motor units under optical control in vivo|journal=Nature Medicine|date=October 2010|volume=16|issue=10|pages=1161–5|pmid=20871612|pmc=5839640 |doi=10.1038/nm.2228|ref=refLlewellyn2010}}
  • {{cite journal|last=Lobo |first=M. K. |author2=Covington, H. E., 3rd |author3=Chaudhury, D. |author4=Friedman, A. K. |author5=Sun, H. |author6=Damez-Werno, D. |author7=Dietz, D. M. |author8=Zaman, S. |author9=Koo, J. W. |author10=Kennedy, P. J. |author11=Mouzon, E. |author12=Mogri, M. |author13=Neve, R. L. |author14=Deisseroth, K. |author15=Han, M. H. |author16=Nestler, E. J. |title=Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward|journal=Science|date=2010-10-15|volume=330|issue=6002|pages=385–90|pmid=20947769|doi=10.1126/science.1188472|pmc=3011229|bibcode = 2010Sci...330..385L |ref=refLobo2010}}
  • {{cite journal |doi=10.1038/scientificamerican1008-52 |author=Miesenböck, G. |title=Lighting up the brain |journal=Sci. Am. |volume=299 |issue=4 |pages=52–9 |date=October 2008 |pmid=18847085 |ref=refMiesenböck2008|bibcode=2008SciAm.299d..52M }}
  • {{cite journal |author=Miesenböck, G. |title=The optogenetic catechism |journal=Science |volume=326 |issue=5951 |pages=395–9 |date=October 2009 |pmid=19833960 |doi=10.1126/science.1174520|bibcode = 2009Sci...326..395M |ref=refMiesenbock2009}}
  • {{cite journal |author=Miller, G. |title=Optogenetics. Shining new light on neural circuits |journal=Science |volume=314 |issue=5806 |pages=1674–6 |date=December 2006 |pmid=17170269 |doi=10.1126/science.314.5806.1674 |ref=refMiller2006}}
  • {{cite journal|last=Schneider |first=M. B. |author2=Gradinaru, V. |author3=Zhang, F. |author4= Deisseroth, K. |title=Controlling neuronal activity|journal=The American Journal of Psychiatry|date=May 2008|volume=165|issue=5|page=562|pmid=18450936|doi=10.1176/appi.ajp.2008.08030444|ref=refSchneider2008}}
  • {{cite journal |author=Schröder-Lang, S. |title=Fast manipulation of cellular cAMP level by light in vivo |journal=Nature Methods |volume=4 |issue=1 |pages=39–42 |date=January 2007 |pmid=17128267 |doi=10.1038/nmeth975 |last2=Schwärzel |first2=M. |last3=Seifert |first3=R. |display-authors=4 |last4=Strünker |first4=Timo |last5=Kateriya |first5=Suneel |last6=Looser |first6=Jens |last7=Watanabe |first7=Masakatsu |last8=Kaupp |first8=U Benjamin |last9=Hegemann |first9=Peter|ref=refSchroeder-Lang2007}}
  • {{cite journal |author=Szobota, S. |title=Remote control of neuronal activity with a light-gated glutamate receptor |journal=Neuron |volume=54 |issue=4 |pages=535–45 |date=May 2007 |pmid=17521567 |doi=10.1016/j.neuron.2007.05.010 |url=http://linkinghub.elsevier.com/retrieve/pii/S0896-6273(07)00344-3 |last2=Gorostiza |first2=P. |last3=Del Bene |first3=F. |display-authors=4 |last4=Wyart |first4=Claire |last5=Fortin |first5=Doris L. |last6=Kolstad |first6=Kathleen D. |last7=Tulyathan |first7=Orapim |last8=Volgraf |first8=Matthew |last9=Numano |first9=Rika|ref=refSzobota2007}}
  • {{cite journal |author=Toni, N. |title=Neurons born in the adult dentate gyrus form functional synapses with target cells |journal=Nat. Neurosci. |volume=11 |issue=8 |pages=901–7 |date=August 2008 |pmid=18622400 |pmc=2572641 |doi=10.1038/nn.2156 |last2=Laplagne |first2=D. A. |last3=Zhao |first3=C. |display-authors=4 |last4=Lombardi |first4=Gabriela |last5=Ribak |first5=Charles E |last6=Gage |first6=Fred H |last7=Schinder |first7=Alejandro F|ref=refToni2008}}
  • {{cite journal|last=Tønnesen |first=J. |author2=Sørensen, A. T. |author3=Deisseroth, K. |author4=Lundberg, C. |author5= Kokaia, M. |title=Optogenetic control of epileptiform activity|journal=Proceedings of the National Academy of Sciences of the United States of America|date=2009-07-21|volume=106|issue=29|pages=12162–7|pmid=19581573|doi=10.1073/pnas.0901915106|pmc=2715517|bibcode = 2009PNAS..10612162T |ref=refTonnesen}}
  • {{cite journal |author=Wang, S. |title=All optical interface for parallel, remote, and spatiotemporal control of neuronal activity |journal=Nano Lett. |volume=7 |issue=12 |pages=3859–63 |date=December 2007 |pmid=18034506 |doi=10.1021/nl072783t |last2=Szobota |first2=S. |last3=Wang |first3=Y. |display-authors=4 |last4=Volgraf |first4=Matthew |last5=Liu |first5=Zhaowei |last6=Sun |first6=Cheng |last7=Trauner |first7=Dirk |last8=Isacoff |first8=Ehud Y. |last9=Zhang |first9=Xiang|bibcode = 2007NanoL...7.3859W |ref=refWang2007a|citeseerx=10.1.1.71.5267 }}
  • {{cite journal |author=Wang, H. |title=High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=104 |issue=19 |pages=8143–8 |date=May 2007 |pmid=17483470 |pmc=1876585 |doi=10.1073/pnas.0700384104 |last2=Peca |first2=J. |last3=Matsuzaki |first3=M. |display-authors=4 |last4=Matsuzaki |first4=K. |last5=Noguchi |first5=J. |last6=Qiu |first6=L. |last7=Wang |first7=D. |last8=Zhang |first8=F. |last9=Boyden |first9=E.|last10=Deisseroth |first10=K. |last11=Kasai |first11=H. |last12=Hall |first12=W. C. |last13=Feng |first13=G. |last14=Augustine |first14=G. J. |bibcode = 2007PNAS..104.8143W |ref=refWang2007b}}
  • {{cite journal|last=Wang |first=Y. |author2=Dye, C. A. |author3=Sohal, V. |author4=Long, J. E. |author5=Estrada, R. C. |author6=Roztocil, T. |author7=Lufkin, T. |author8=Deisseroth, K. |author9=Baraban, S. C. |author10= Rubenstein, J. L. |title=Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons|journal=Journal of Neuroscience|date=2010-04-14|volume=30|issue=15|pages=5334–45|pmid=20392955|doi=10.1523/JNEUROSCI.5963-09.2010|pmc=2919857|ref=refWangY2010}}
  • {{cite journal|last=Weick |first=J. P. |author2=Johnson, M. A. |author3=Skroch, S. P. |author4=Williams, J. C. |author5=Deisseroth, K. |author6= Zhang, S. C. |title=Functional control of transplantable human ESC-derived neurons via optogenetic targeting|journal=Stem Cells|date=November 2010|volume=28|issue=11|pages=2008–16|pmid=20827747|pmc=2988875|doi=10.1002/stem.514|ref=refWeick2010}}
  • {{cite journal |author1=Zhang, F. |author2=Wang, L. P. |author3=Boyden, E. S. |author4=Deisseroth, K. |title=Channelrhodopsin-2 and optical control of excitable cells |journal=Nat. Methods |volume=3 |issue=10 |pages=785–92 |date=October 2006 |pmid=16990810 |doi=10.1038/nmeth936|ref=refZhang2006}}
  • {{cite journal |author=Zhang, F. |title=Multimodal fast optical interrogation of neural circuitry |journal=Nature |volume=446 |issue=7136 |pages=633–9 |date=April 2007 |pmid=17410168 |doi=10.1038/nature05744 |last2=Wang |first2=L. P. |last3=Brauner |first3=M. |display-authors=4 |last4=Liewald |first4=Jana F. |last5=Kay |first5=Kenneth |last6=Watzke |first6=Natalie |last7=Wood |first7=Phillip G. |last8=Bamberg |first8=Ernst |last9=Nagel |first9=Georg|last10=Gottschalk |first10=Alexander |last11=Deisseroth |first11=Karl |bibcode = 2007Natur.446..633Z |ref=refZhang2007a}}
  • {{cite journal |author1=Zhang, F. |author2=Aravanis, A. M. |author3=Adamantidis, A. |author4=de Lecea, L. |author5=Deisseroth, K. |title=Circuit-breakers: optical technologies for probing neural signals and systems |journal=Nature Reviews Neuroscience |volume=8 |issue=8 |pages=577–81 |date=August 2007 |pmid=17643087 |doi=10.1038/nrn2192|ref=refZhang2007b}}
  • {{cite journal |author=Zhang, Y. P.; Holbro, N.; Oertner, T. G. |title=Optical induction of plasticity at single synapses reveals input-specific accumulation of alphaCaMKII |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=105 |issue=33 |pages=12039–44 |date=August 2008 |pmid=18697934 |pmc=2575337 |doi=10.1073/pnas.0802940105|bibcode = 2008PNAS..10512039Z |last2=Holbro |last3=Oertner |ref=refZhang2007c}}
  • {{cite journal |author=Zhang, F. |title=Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri |journal=Nat. Neurosci. |volume=11 |issue=6 |pages=631–3 |date=June 2008 |pmid=18432196 |pmc=2692303 |doi=10.1038/nn.2120 |last2=Prigge |first2=M. |last3=Beyrière |first3=F. |display-authors=4 |last4=Tsunoda |first4=Satoshi P |last5=Mattis |first5=Joanna |last6=Yizhar |first6=Ofer |last7=Hegemann |first7=Peter |last8=Deisseroth |first8=Karl|ref=refZhang2008}}
  • {{cite journal|last=Zhang |first=F. |author2=Gradinaru, V. |author3=Adamantidis, A. R. |author4=Durand, R. |author5=Airan, R. D. |author6=de Lecea, L. |author7=Deisseroth, K. |title=Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures|journal=Nature Protocols|year=2010|volume=5|issue=3|pages=439–56|pmid=20203662|doi=10.1038/nprot.2009.226|ref=refZhang2010 |pmc=4503465}}
  • {{cite journal|last=Zhang |first=J. |author2=Laiwalla, F. |author3=Kim, J. A. |author4=Urabe, H. |author5=Van Wagenen, R. |author6=Song, Y. K. |author7=Connors, B. W. |author8=Zhang, F. |author9=Deisseroth, K. |author10=Nurmikko, A. V. |title=Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue|journal=Journal of Neural Engineering|date=October 2009|volume=6|issue=5|page=055007|pmid=19721185|url=http://iopscience.iop.org/1741-2552/6/5/055007/|doi=10.1088/1741-2560/6/5/055007|pmc=2921864|bibcode = 2009JNEng...6e5007Z |ref=refZhangJ2009}}
  • {{cite journal|last=Zhu |first=P. |author2=Narita, Y. |author3=Bundschuh, S. T. |author4=Fajardo, O. |author5=Schärer, Y. P. |author6=Chattopadhyaya, B. |author7=Bouldoires, E. A. |author8=Stepien, A. E. |author9=Deisseroth, K. |author10=Arber, S. |author11=Sprengel, R. |author12=Rijli, F. M. |author13=Friedrich, R. W. |title=Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System|journal=Frontiers in Neural Circuits|date=2009-12-11|volume=3|page=21|pmid=20126518|doi=10.3389/neuro.04.021.2009|pmc=2805431|ref=refZhu2009}}
  • {{cite journal|last=Zimmermann |first=G. |author2=Wang, L. P. |author3=Vaughan, A. G. |author4=Manoli, D. S. |author5=Zhang, F. |author6=Deisseroth, K. |author7=Baker, B. S. |author8= Scott, M. P. |title=Manipulation of an innate escape response in Drosophila: photoexcitation of acj6 neurons induces the escape response|journal=PLoS ONE|year=2009|volume=4|issue=4|pages=e5100|pmid=19340304|pmc=2660433|doi=10.1371/journal.pone.0005100|editor1-last=Nitabach|editor1-first=Michael N.|bibcode = 2009PLoSO...4.5100Z }} {{open access|ref=refZimmermann2009}}

External links

{{external links|date=October 2013}}
  • [https://www.scientifica.uk.com/learning-zone/optogenetics-shedding-light-on-the-brains-secrets Optogenetics: shedding light on the brain's secrets] Scientifica
  • Optogenetics Resource Center, maintained by the Deisseroth lab.
  • Synthetic Neurobiology Group, MIT, the portal of the Boyden lab.
  • OpenOptogenetics.org, an optogenetics wiki, and its companion blog.
  • Molecular Neurogenetics and Optophysiology Laboratory,"Optogenetic activation and silencing recordings of individual prefrontal cortical neurons in vivo and in vitro.
  • Sohal lab portal
  • Nurmikko lab portal
  • Lab of Dr. Zhuo-Hua Pan
  • Optophysiology at the Tyler lab
  • Video: Ed Boyden on Optogenetics -- selective brain stimulation with light (SPIE Newsroom, April 2011)
{{BCI}}

8 : Neuroscience|Biological techniques and tools|Cybernetics|Control theory|Brain–computer interfacing|Neuroprosthetics|Neural engineering|Articles containing video clips

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 4:00:23