词条 | Luyten's Star |
释义 |
| name = Luyten's star }}{{Starbox observe | epoch = J2000 | constell = Canis Minor | ra = {{RA|07|27|24.4991}}[1] | dec = {{DEC|+05|13|32.827}}[1] | appmag_v = 9.872[3] }}{{Starbox character | class = M3.5V[4] | b-v = 1.571[3] | u-b = 1.115[3] | variable = None }}{{Starbox astrometry | radial_v = +18.2[7] | prop_mo_ra = 571.27[1] | prop_mo_dec = -3694.25[1] | parallax = 267.36 | p_error = 0.79 | parallax_footnote = {{r|Gatewood2008}} | absmag_v = 11.94[3] }}{{Starbox detail | mass = 0.26[4] | radius = 0.35[12] | luminosity = | temperature = {{nowrap|3,150 ± 100}}[13] | gravity = 5[13] | metal_fe = {{nowrap|−0.16 ± 0.20}}[7] | rotation = {{Val|115.6|19.4|u=d}}[16] | age = }}{{Starbox catalog | names = GCTP1755, BD +05°1668, GJ 273, G 089-019, LHS 33, LTT 12021, LFT 527, Vys 17, HIP 36208. }}{{Starbox reference |Simbad=BD%2B05+1668 }}{{Starbox end}}Luyten's Star (GJ 273) is a red dwarf in the constellation Canis Minor located at a distance of approximately {{Convert|12.36|ly|pc|abbr=off|lk=on}} from the Sun. It has a visual magnitude of 9.9, making it too faint to be viewed with the unaided eye. It is named after Willem Jacob Luyten, who, in collaboration with Edwin G. Ebbighausen, first determined its high proper motion in 1935.[17] This star is approximately a quarter the mass of the Sun[4] and has 35% of the Sun's radius.[12] Luyten's Star is at the maximum mass at which a red dwarf can be fully convective, which means that most if not all of the star forms an extended convection zone.[20] It has a stellar classification of M3.5V,[4] with the V luminosity class indicating this is a main-sequence star that is generating energy through the thermonuclear fusion of hydrogen at its core. The projected rotation rate of this star[1] is too low to be measured, but is no greater than 1 km/s.[23] Measurements of periodic variation in surface activity suggest a leisurely rotation period of roughly 116 days (which would give a velocity of ~0.15 km/s).[16] The effective temperature of the star's outer envelope is a relatively cool 3,150 K, giving the star the characteristic red-orange hue of an M-type star.[13][26] At present, Luyten's Star is moving away from the Solar System. The closest approach occurred about 13,000 years ago when it came within 3.67 parsecs.[2] The star is currently located 1.2 light years distant from Procyon, and the latter would appear as a visual magnitude −4.5 star in the night sky of one of the planets orbiting Luyten's Star.[3] The closest encounter between the two stars occurred about 600 years ago when Luyten's Star was at its minimal distance of about 1.12 ly from Procyon.[4] The space velocity components of Luyten's Star are U = +16, V = −66 and W = −17 km/s.[4][5][6] Planetary systemIn March 2017, two planets were discovered orbiting Luyten's Star. The outer planet, GJ 273b, is a Super Earth in its star's habitable zone. It has a mass of 2.89 ± 0.26 Earth masses and orbits at a distance of 0.09110 ± 0.00002 AU, completing one orbital period in 18.650 ± 0.006 days. While the planet is on the innermost edge of the star's conservative habitable zone, the incident flux is only 1.06S⊕, so it may be potentially habitable if water and an atmosphere are present; depending on albedo, its equilibrium temperature could be anywhere between 206 and 293 Kelvin. The inner planet, GJ 273c, is one of the lightest exoplanets detected by radial velocities, with a mass of only 1.18 ± 0.16 Earth masses. However, it orbits much further in, with an orbital period of only 4.7234 ± 0.00004 days. GJ 273b is one of the closest known planets in its star's habitable zone. In October 2017, "Sónar Calling GJ 273b," a project by Messaging Extraterrestrial Intelligence (METI) and [https://sonar.es/ Sónar], a music festival in Barcelona, transmitted a series of radio signals towards Luyten's star from a radar antenna at Ramfjordmoen, Norway.[7] The signal consisted of a scientific and mathematical tutorial on how to decode the messages and was accompanied by 33 encoded musical compositions by various musicians. A second signal series was transmitted on May 14, 15, and 16, 2018. Assuming anyone is listening, the soonest man could expect a response would be 2036. {{OrbitboxPlanet begin}}{{OrbitboxPlanet| exoplanet = c | mass_earth = 1.18 ± 0.16 | period = 4.7234 ± 0.0004 | semimajor = 0.036467 | eccentricity = 0.17 }}{{OrbitboxPlanet | exoplanet = b | mass_earth = 2.89±0.26 | period = 18.650 ± 0.006 | semimajor = 0.09110 ± 0.00002 | eccentricity = 0.10 }}{{Orbitbox end}} See also
References1. ^This is denoted by v sin i, where v is the rotational velocity at the equator and i is the inclination to the line of sight. [8][9][10][11][12][13][14][15][16][17][18][19]2. ^{{cite journal | author=García-Sánchez, J. | display-authors=etal | date=2001 | title=Stellar encounters with the solar system | journal=Astronomy and Astrophysics | volume=379 | pages=634–659 | doi=10.1051/0004-6361:20011330 | bibcode=2001A&A...379..634G| url=http://www.aanda.org/articles/aa/pdf/2001/44/aah2819.pdf}} 3. ^{{cite book | first=Fred | last=Schaaf | date=2008 | title=The Brightest Stars: Discovering the Universe Through the Sky's Most Brilliant Stars | page=169 | publisher=John Wiley and Sons | isbn=0-471-70410-5 }} 4. ^1 {{cite web | title= Annotations on LHS 33 object | work= SIMBAD | publisher=Centre de Données astronomiques de Strasbourg | url=http://cdsannotations.u-strasbg.fr/annotations/simbadObject/971564 | accessdate=2010-04-21 }} 5. ^{{cite journal | author=Delfosse, X. | author2=Forveille, T. | author3=Perrier, C. | author4=Mayor, M. | title=Rotation and chromospheric activity in field M dwarfs | journal=Astronomy and Astrophysics | volume=331 | pages=581–595 |date=March 1998 | bibcode=1998A&A...331..581D }} 6. ^{{cite web | title=ARICNS star page of GJ 273 | url=http://www.ari.uni-heidelberg.de/datenbanken/aricns/cnspages/4c00562.htm | publisher=Astronomisches Rechen-Institut Heidelberg | accessdate=2010-04-21}} 7. ^{{cite news|title=How to send a message to another planet|url=https://www.economist.com/news/science-and-technology/21731380-including-clock-some-trigonometry-and-some-jean-michel-jarre-how-send/|accessdate=19 November 2017|work=The Economist|date=November 16, 2017}} 8. ^1 2 3 4 {{citation | display-authors=1 | last1=Perryman | first1=M. A. C. | last2=Lindegren | first2=L. | last3=Kovalevsky | first3=J. | last4=Hoeg | first4=E. | last5=Bastian | first5=U. | last6=Bernacca | first6=P. L. | last7=Crézé | first7=M. | last8=Donati | first8=F. | last9=Grenon | first9=M. | title=The Hipparcos Catalogue | journal=Astronomy and Astrophysics | date=1997 | volume=323 | pages=L49–L52 | bibcode=1997A&A...323L..49P }} 9. ^1 2 {{citation | last1=Lacy | first1=C. H. | title=Radii of nearby stars: an application of the Barnes-Evans relation | journal=Astrophysical Journal Supplement Series | volume=34 | pages=479–492 |date=August 1977 | doi=10.1086/190459 | bibcode=1977ApJS...34..479L }} 10. ^1 2 3 4 {{citation | display-authors=1 | last1=Koen | first1=C. | last2=Kilkenny | first2=D. | last3=van Wyk | first3=F. | last4=Cooper | first4=D. | last5=Marang | first5=F. | title=UBV(RI)C photometry of Hipparcos red stars | journal=Monthly Notices of the Royal Astronomical Society | volume=334 | issue=1 | pages=20–38 |date=July 2002 | doi=10.1046/j.1365-8711.2002.05403.x | bibcode=2002MNRAS.334...20K}} 11. ^1 2 3 4 {{citation | title=The One Hundred Nearest Stars | date=2009-01-01 | publisher=Research Consortium On Nearby Stars | url=http://www.astro.gsu.edu/RECONS/TOP100.posted.htm | accessdate=2009-09-03 }} 12. ^1 2 3 {{citation | display-authors=1 | last1=Viti | first1=S. | last2=Jones | first2=H. R. A. | last3=Richter | first3=M. J. | last4=Barber | first4=R. J. | last5=Tennyson | first5=J. | last6=Lacy | first6=J. H. | title=A potential new method for determining the temperature of cool stars | journal=Monthly Notices of the Royal Astronomical Society | volume=388 | issue=3 | pages=1305–1313 |date=August 2008 | doi=10.1111/j.1365-2966.2008.13489.x | bibcode=2008MNRAS.388.1305V|arxiv = 0805.3297 }} 13. ^1 2 {{citation | display-authors=1 | last1=Nidever | first1=David L. | last2=Marcy | first2=Geoffrey W. | last3=Butler | first3=R. Paul | last4=Fischer | first4=Debra A. | last5=Vogt | first5=Steven S. | title=Radial Velocities for 889 Late-Type Stars | journal=The Astrophysical Journal Supplement Series | volume=141 | issue=2 | pages=503–522 |date=August 2002 | doi=10.1086/340570 | bibcode=2002ApJS..141..503N|arxiv = astro-ph/0112477 }} 14. ^1 {{citation | last=Reiners | first=A. |date=May 2007 | title=The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation | journal=Astronomy and Astrophysics | volume=467 | issue=1 | pages=259–268 | doi=10.1051/0004-6361:20066991 | bibcode=2007A&A...467..259R|arxiv = astro-ph/0702634 }} 15. ^1 {{citation | last1=Reiners | first1=A. | last2=Basri | first2=G. | title=On the magnetic topology of partially and fully convective stars | journal=Astronomy and Astrophysics | volume=496 | issue=3 | pages=787–790 |date=March 2009 | doi=10.1051/0004-6361:200811450 | bibcode=2009A&A...496..787R |arxiv = 0901.1659 }} 16. ^1 {{citation | last1=Luyten | first1=W. J. | last2=Ebbighausen | first2=E. G. | title=A Faint Star of Large Proper Motion | journal=Harvard College Observatory Bulletin | issue=900 | pages=1–3 |date=September 1935 | bibcode=1935BHarO.900....1L }} 17. ^1 {{citation |title=The Colour of Stars |date=December 21, 2004 |work=Australia Telescope, Outreach and Education |publisher=Commonwealth Scientific and Industrial Research Organisation |url=http://outreach.atnf.csiro.au/education/senior/astrophysics/photometry_colour.html |accessdate=2012-01-16 |deadurl=yes |archiveurl=https://www.webcitation.org/6630AbtJZ?url=http://outreach.atnf.csiro.au/education/senior/astrophysics/photometry_colour.html |archivedate=March 10, 2012 |df= }} 18. ^{{cite journal |last=Gatewood |first=George |title=Astrometric Studies of Aldebaran, Arcturus, Vega, the Hyades, and Other Regions |year=2008 |journal=The Astronomical Journal |volume=136 | issue=1 | pages=452–460 |arxiv= |doi=10.1088/0004-6256/136/1/452 |bibcode=2008AJ....136..452G}} 19. ^1 2 {{citation | display-authors=1 | last1=Suárez Mascareño | first1=A. | last2=Rebolo | first2=R. | last3=González Hernández | first3=J. I. | last4=Esposito | first4=M. | title=Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators | journal=Monthly Notices of the Royal Astronomical Society | volume=452 | issue=3 | pages=2745–2756 | date=September 2015 | doi=10.1093/mnras/stv1441 | bibcode=2015MNRAS.452.2745S | arxiv=1506.08039 | postscript=.}} }} Notes{{reflist|group=note}}External links
6 : Local Bubble|M-type main-sequence stars|Canis Minor|Hipparcos objects|Gliese and GJ objects|Durchmusterung objects |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。