请输入您要查询的百科知识:

 

词条 Lyapunov equation
释义

  1. Application to stability

  2. Computational aspects of solution

  3. Analytic solution

     Discrete time  Continuous time 

  4. See also

  5. References

In control theory, the discrete Lyapunov equation is of the form

where is a Hermitian matrix and is the conjugate transpose of .

The continuous Lyapunov equation is of form: .

The Lyapunov equation occurs in many branches of control theory, such as stability analysis and optimal control. This and related equations are named after the Russian mathematician Aleksandr Lyapunov.

Application to stability

In the following theorems , and and are symmetric. The notation means that the matrix is positive definite.

Theorem (continuous time version). Given any , there exists a unique satisfying if and only if the linear system is globally asymptotically stable. The quadratic function is a Lyapunov function that can be used to verify stability.

Theorem (discrete time version). Given any , there exists a unique satisfying if and only if the linear system is globally asymptotically stable. As before, is a Lyapunov function.

Computational aspects of solution

Specialized software is available for solving Lyapunov equations. For the discrete case, the Schur method of Kitagawa is often used.[1] For the continuous Lyapunov equation the method of Bartels and Stewart can be used.[2]

Analytic solution

Defining the operator as stacking the columns of a matrix and as the Kronecker product of and , the continuous time and discrete time Lyapunov equations can be expressed as solutions of a matrix equation. Furthermore, if the matrix is stable, the solution can also be expressed as an integral (continuous time case) or as an infinite sum (discrete time case).

Discrete time

Using the result that , one has

where is a conformable identity matrix.[3] One may then solve for by inverting or solving the linear equations. To get , one must just reshape appropriately.

Moreover, if is stable, the solution can also be written as

.

For comparison, consider the one-dimensional case, where this just says that the solution of is .

Continuous time

Using again the Kronecker product notation and the vectorization operator, one has the matrix equation

where denotes the matrix obtained by complex conjugating the entries of .

Similar to the discrete-time case, if is stable, the solution can also be written as

.

For comparison, consider the one-dimensional case, where this just says that the solution of is .

See also

  • Sylvester equation
  • Algebraic Riccati equation
  • Kalman filter

References

1. ^{{cite journal |last=Kitagawa |first=G. |title=An Algorithm for Solving the Matrix Equation X = F X F' + S |journal=International Journal of Control |volume=25 |issue=5 |pages=745–753 |year=1977 |doi=10.1080/00207177708922266 }}
2. ^{{cite journal |first=R. H. |last=Bartels |first2=G. W. |last2=Stewart |title=Algorithm 432: Solution of the matrix equation AX + XB = C |journal=Comm. ACM |volume=15 |year=1972 |issue=9 |pages=820–826 |doi=10.1145/361573.361582 }}
3. ^{{cite book |first=J. |last=Hamilton |year=1994 |title=Time Series Analysis |at=Equations 10.2.13 and 10.2.18 |location= |publisher=Princeton University Press |isbn=0-691-04289-6 }}
{{DEFAULTSORT:Lyapunov Equation}}

1 : Control theory

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/21 16:31:16