词条 | Primordial black hole |
释义 |
Since primordial black holes did not form from stellar gravitational collapse, their masses can be far below stellar mass (c. {{val|2|e=30|u=kg}}). Hawking calculated that primordial black holes could weigh as little as {{val|e=−8|u=kg}}, about the weight of a human ovum. Theoretical historyDepending on the model, primordial black holes could have initial masses ranging from {{val|e=−8|u=kg}} (the so-called Planck relics) to more than thousands of solar masses. However, primordial black holes with a mass lower than {{val|e=11|u=kg}} would have evaporated due to Hawking radiation in a time much shorter than the age of the Universe, so they would not have survived to the present. Primordial black holes are non-baryonic[3] and as such are plausible dark matter candidates.[4][5][6][7] Primordial black holes are also good candidates for being the seeds of the supermassive black holes at the center of massive galaxies, as well as of intermediate-mass black holes.[8] Primordial black holes belong to the class of massive compact halo objects (MACHOs). They are naturally a good dark matter candidate: they are (nearly) collision-less and stable (if sufficiently massive), they have non-relativistic velocities, and they form very early in the history of the Universe (typically less than one second after the Big Bang). Nevertheless, tight limits on their abundance have been set up from various astrophysical and cosmological observations, so that it is now excluded that they contribute significantly to dark matter over most of the plausible mass range. In March 2016, one month after the announcement of the detection by Advanced LIGO/VIRGO of gravitational waves emitted by the merging of two 30 solar mass black holes (about {{val|6|e=31|u=kg}}), three groups of researchers proposed independently that the detected black holes had a primordial origin.[9][10][11][12] Two of the groups found that the merging rates inferred by LIGO are consistent with a scenario in which all the dark matter is made of primordial black holes, if a non-negligible fraction of them are somehow clustered within halos such as faint dwarf galaxies or globular clusters, as expected by the standard theory of cosmic structure formation. The third group claimed that these merging rates are incompatible with an all-dark-matter scenario and that primordial black holes could only contribute to less than one percent of the total dark matter. The unexpected large mass of the black holes detected by LIGO has strongly revived interest in primordial black holes with masses in the range of 1 to 100 solar masses. It is however still debated whether this range is excluded or not by other observations, such as the absence of micro-lensing of stars, the cosmic microwave background anisotropies, the size of faint dwarf galaxies, and the absence of correlation between X-ray and radio sources towards the galactic center. In May 2016, Alexander Kashlinsky suggested that the observed spatial correlations in the unresolved gamma-ray and X-ray background radiations could be due to primordial black holes with similar masses, if their abundance is comparable to that of dark matter.[13] FormationPrimordial black holes could have formed in the very early Universe (less than one second after the Big Bang), during the so-called radiation dominated era. The essential ingredient for the formation of a primordial black hole is a fluctuation in the density of the Universe, inducing its gravitational collapse. One typically requires density contrasts (where is the density of the Universe) to form a black hole.[14] There are several mechanisms able to produce such inhomogeneities in the context of cosmic inflation (in hybrid inflation models, for example axion inflation), reheating, or cosmological phase transitions. Observational limits and detection strategiesA variety of observations have been interpreted to place limits on the abundance and mass of primordial black holes:
At the time of the detection by LIGO of the gravitational waves emitted during the final coalescence of two 30 solar mass black holes, the mass range between 10 and 100 solar masses was still only poorly constrained. Since then, new observations have been claimed to close this window, at least for models in which the primordial black holes have all the same mass:
In the future, new limits will be set up by various observations:
ImplicationsThe evaporation of primordial black holes has been suggested as one possible explanation for gamma-ray bursts. This explanation is, however, considered unlikely.{{clarify|date=February 2012}}{{citation needed|date=February 2012}} Other problems for which primordial black holes have been suggested as a solution include the dark matter problem, the cosmological domain wall problem[38] and the cosmological monopole problem.[39] Since a primordial black hole does not necessarily have to be small (they can have any size), primordial black holes may also have contributed to the later formation of galaxies. Even if they do not solve these problems, the low number of primordial black holes (as of 2010, only two intermediate mass black holes were confirmed) aids cosmologists by putting constraints on the spectrum of density fluctuations in the early universe. String theory{{main|String theory}}General relativity predicts the smallest primordial black holes would have evaporated by now, but if there were a fourth spatial dimension – as predicted by string theory – it would affect how gravity acts on small scales and "slow down the evaporation quite substantially".[40] This could mean there are several thousand black holes in our galaxy. To test this theory, scientists will use the Fermi Gamma-ray Space Telescope which was put in orbit by NASA on June 11, 2008. If they observe specific small interference patterns within gamma-ray bursts, it could be the first indirect evidence for primordial black holes and string theory. References1. ^{{cite journal|last1=Zel'dovitch & Novikov|title=The Hypothesis of Cores Retarded During Expansion and the Hot Cosmological MOdel|journal=Soviet Astronomy|date=14 March 1966|volume=10|issue=4|pages=602–603|bibcode=1966AZh....43..758Z}} {{Refbegin}}2. ^{{cite journal|last1=Hawking|first1=S|year=1971|title=Gravitationally collapsed objects of very low mass|url=|journal=Mon. Not. R. Astron. Soc.|volume=152|issue=|page=75|doi=10.1093/mnras/152.1.75|bibcode=1971MNRAS.152...75H}} 3. ^{{cite journal |last1=Overduin |first1=J. M. |last2=Wesson |first2=P. S. |title=Dark Matter and Background Light |journal=Physics Reports |date=November 2004 |volume=402 |issue=5–6 |pages=267–406 |doi=10.1016/j.physrep.2004.07.006 |arxiv=astro-ph/0407207 }} 4. ^{{cite journal |last1=Espinosa |first1=J. R. |last2=Racco |first2=D. |last3=Riotto |first3=A. |title=A Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter |journal=Physical Review Letters |volume=120 |issue=12 |pages=121301 |doi=10.1103/PhysRevLett.120.121301 |pmid=29694085 |date=23 March 2018}} 5. ^{{cite arxiv |last1=Clesse |first1=Sebastien |last2=García-Bellido |first2=Juan |title=Seven Hints for Primordial Black Hole Dark Matter |date=28 November 2017 |eprint=1711.10458 |class=astro-ph.CO }} 6. ^{{cite journal |last1=Lacki |first1=Brian C. |last2=Beacom |first2=John F. |title=Primordial Black Holes as Dark Matter: Almost All or Almost Nothing |journal=The Astrophysical Journal |date=12 August 2010 |volume=720 |issue=1 |pages=L67–L71 |doi=10.1088/2041-8205/720/1/L67 |language=en |issn=2041-8205 }} 7. ^{{cite journal |last1=Kashlinsky |first1=A. |title=LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies |journal=The Astrophysical Journal |date=23 May 2016 |volume=823 |issue=2 |pages=L25 |doi=10.3847/2041-8205/823/2/L25 |arxiv=1605.04023 |issn=2041-8213}} 8. ^{{Cite journal |last=Clesse |first=S. |last2=Garcia-Bellido |first2=J. |year=2015 |title=Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies |journal=Physical Review D |volume=92 |issue=2 |pages=023524 |arxiv=1501.07565 |bibcode= 2015PhRvD..92b3524C|doi=10.1103/PhysRevD.92.023524|hdl=10486/674729 }} 9. ^{{cite journal |last=Bird |first=S. |last2=Cholis |first2=I. |year=2016 |title=Did LIGO Detect Dark Matter? |journal=Physical Review Letters |volume=116 |issue=20 |pages=201301 |arxiv= 1603.00464|bibcode= 2016PhRvL.116t1301B|doi=10.1103/PhysRevLett.116.201301|pmid=27258861 }} 10. ^{{cite journal |last=Clesse |first=S. |last2=Garcia-Bellido |first2=J. |year=2017 |title=The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with Advanced LIGO |journal=Physics of the Dark Universe |volume=10 |issue=2016 |pages=142–147 |arxiv=1603.05234 |bibcode= 2017PDU....15..142C|doi=10.1016/j.dark.2016.10.002}} 11. ^{{Cite journal |last=Sasaki |first=M. |last2=Suyama |first2=T. |last3=Tanaki |first3=T. |year=2016 |title=Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914 |journal=Physical Review Letters |volume=117 |issue=6 |pages=061101 |arxiv=1603.08338 |bibcode= 2016PhRvL.117f1101S|doi=10.1103/PhysRevLett.117.061101 |pmid=27541453 }} 12. ^{{cite web | publisher=Johns Hopkins University | title=Did Gravitational Wave Detector Find Dark Matter? | date=June 15, 2016 | url=http://releases.jhu.edu/2016/06/15/did-gravitational-wave-detector-find-dark-matter/ | access-date=June 20, 2015}} 13. ^{{Cite journal |last=Kashlinsky |first=A. |year=2016 |title=LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies |journal=The Astrophysical Journal |volume=823 |issue=2 |pages=L25 |arxiv=1605.04023 |bibcode= 2016ApJ...823L..25K|doi=10.3847/2041-8205/823/2/L25 }} 14. ^{{Cite journal |last=Harada |first=T. |last2=Yoo |first2=C.-M. |last3=Khori |first3=K. |year=2013 |title=Threshold of primordial black hole formation |journal=Physical Review D |volume=88 |issue=8 |pages=084051 |arxiv=1309.4201 |bibcode= 2013PhRvD..88h4051H|doi=10.1103/PhysRevD.88.084051 }} 15. ^{{cite journal | last1 = Hawking | first1 = S.W. | year = 1977 | title = The quantum mechanics of black holes | url = | journal = Scientific American | volume = 236 | issue = | pages = 34–40 | doi=10.1038/scientificamerican0177-34|bibcode = 1977SciAm.236a..34H }} 16. ^{{Cite journal|first=A. |last=Barnacka |first2=J. |last2=Glicenstein |first3=R. |last3=Moderski |arxiv=1204.2056 |title=New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts |journal=Physical Review D |volume=86 |issue=4 |pages=043001 |year=2012 |doi=10.1103/PhysRevD.86.043001 |bibcode=2012PhRvD..86d3001B }} 17. ^{{Cite journal|last=Capela |first=Fabio |last2=Pshirkov |first2=Maxim |last3=Tinyakov |first3=Peter |title=Constraints on primordial black holes as dark matter candidates from capture by neutron stars |journal=Physical Review D |volume=87 |issue=12 |pages=123524 |arxiv=1301.4984|year=2013 |doi=10.1103/PhysRevD.87.123524 |bibcode=2013PhRvD..87l3524C }} 18. ^{{Cite journal|arxiv=astro-ph/0607207|last1= Tisserand|first1= P.|title= Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds|journal= Astronomy and Astrophysics|volume= 469|issue= 2|pages= 387–404|last2= Le Guillou|first2= L.|last3= Afonso|first3= C.|last4= Albert|first4= J. N.|last5= Andersen|first5= J.|last6= Ansari|first6= R.|last7= Aubourg|first7= E.|last8= Bareyre|first8= P.|last9= Beaulieu|first9= J. P.|last10= Charlot|first10= X.|last11= Coutures|first11= C.|last12= Ferlet|first12= R.|last13= Fouqué|first13= P.|last14= Glicenstein|first14= J. F.|last15= Goldman|first15= B.|last16= Gould|first16= A.|last17= Graff|first17= D.|last18= Gros|first18= M.|last19= Haissinski|first19= J.|last20= Hamadache|first20= C.|last21= de Kat|first21= J.|last22= Lasserre|first22= T.|last23= Lesquoy|first23= E.|last24= Loup|first24= C.|last25= Magneville|first25= C.|last26= Marquette|first26= J. B.|last27= Maurice|first27= E.|last28= Maury|first28= A.|last29= Milsztajn|first29= A.|last30= Moniez|first30= M.|display-authors= 29|year= 2007|doi= 10.1051/0004-6361:20066017|bibcode=2007A&A...469..387T}} 19. ^{{Cite journal|arxiv=astro-ph/9803082|last1=Collaboration|first1=EROS|title=EROS and MACHO Combined Limits on Planetary Mass Dark Matter in the Galactic Halo|journal=The Astrophysical Journal|volume=499|issue=1|pages=L9|last2=Collaboration|first2=MACHO|last3=Alves|first3=D.|last4=Ansari|first4=R.|last5=Aubourg|first5=É.|last6=Axelrod|first6=T. S.|last7=Bareyre|first7=P.|last8=Beaulieu|first8=J.-Ph.|last9=Becker|first9=A. C.|last10=Bennett|first10=D. P.|last11=Brehin|first11=S.|last12=Cavalier|first12=F.|last13=Char|first13=S.|last14=Cook|first14=K. H.|last15=Ferlet|first15=R.|last16=Fernandez|first16=J.|last17=Freeman|first17=K. C.|last18=Griest|first18=K.|last19=Grison|first19=Ph.|last20=Gros|first20=M.|last21=Gry|first21=C.|last22=Guibert|first22=J.|last23=Lachièze-Rey|first23=M.|last24=Laurent|first24=B.|last25=Lehner|first25=M. J.|last26=Lesquoy|first26=É.|last27=Magneville|first27=C.|last28=Marshall|first28=S. L.|last29=Maurice|first29=É.|last30=Milsztajn|first30=A.|year=1998|doi=10.1086/311355|display-authors=29|bibcode=1998ApJ...499L...9A}} 20. ^{{cite journal |last=Clesse |first=S. |last2=Garcia-Bellido |first2=J. |year=2017 |title=The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with Advanced LIGO |journal=Physics of the Dark Universe |volume=10 |issue=2016 |pages=142–147 |arxiv=1603.05234 |bibcode= 2017PDU....15..142C|doi=10.1016/j.dark.2016.10.002}} 21. ^{{Cite journal|last=Zumalacárregui|first=Miguel|last2=Seljak|first2=Uroš|date=2018-10-01|title=Limits on Stellar-Mass Compact Objects as Dark Matter from Gravitational Lensing of Type Ia Supernovae|journal=Physical Review Letters|volume=121|issue=14|pages=141101|doi=10.1103/PhysRevLett.121.141101|pmid=30339429|arxiv=1712.02240}} 22. ^{{Cite news|url=http://news.berkeley.edu/2018/10/02/black-holes-ruled-out-as-universes-missing-dark-matter/|title=Black holes ruled out as universe’s missing dark matter|date=2018-10-02|work=Berkeley News|access-date=2018-10-04|language=en-US}} 23. ^{{Cite journal|last1=Ali-Haimoud |first1=Y. |last2=Kamionkowski |first2=M. |title=Cosmic microwave background limits on accreting primordial black holes|journal=Physical Review D |volume=95 |issue=4 |pages=043534 |arxiv=1612.05644|year=2017 |doi=10.1103/PhysRevD.95.043534 |bibcode = 2017PhRvD..95d3534A }} 24. ^{{cite journal |last1=Gaggero |first1=D. |last2=Bertone |first2=G. |last3=Calore |first3=F. |last4=Connors |first4=R. |last5=Lovell |first5=L. |last6=Markoff |first6=S. |last7=Storm |first7=E. |title=Searching for primordial black holes in the X-ray and radio sky |arxiv=1612.00457 |year= 2017|doi=10.1103/PhysRevLett.118.241101 |pmid=28665632 |bibcode=2017PhRvL.118x1101G |volume=118 |issue=24 |pages=241101 |journal=Physical Review Letters|url=https://pure.uva.nl/ws/files/25593822/PhysRevLett.118.241101.pdf }} 25. ^{{cite journal|last1=Green|first1=A.M.|title=Microlensing and dynamical constraints on primordial black hole dark matter with an extended mass function|journal=Phys. Rev. D|date=2016|volume=94|issue=6|page=063530|doi=10.1103/PhysRevD.94.063530|arxiv=1609.01143|bibcode=2016PhRvD..94f3530G}} 26. ^{{cite journal|title=Farthest Neighbor: The Distant Milky Way Satellite Eridanus II |arxiv=1611.05052|last1= Li|first1=T. S.|last2= Simon|first2=J. D.|last3= Drlica-Wagner|first3=A.|last4= Bechtol|first4=K.|last5= Wang|first5=M. Y.|last6= García-Bellido|first6=J.|last7= Frieman|first7=J.|last8= Marshall|first8=J. L.|last9= James|first9=D. J.|last10= Strigari|first10=L.|last11= Pace|first11=A. B.|last12= Balbinot|first12=E.|last13= Zhang|first13=Y.|last14= Abbott|first14=T. M. C.|last15= Allam|first15=S.|last16= Benoit-Lévy|first16=A.|last17= Bernstein|first17=G. M.|last18= Bertin|first18=E.|last19= Brooks|first19=D.|last20= Burke|first20=D. L.|last21= Carnero Rosell|first21=A.|last22= Carrasco Kind|first22=M.|last23= Carretero|first23=J.|last24= Cunha|first24=C. E.|last25= D'Andrea|first25=C. B.|last26= da Costa|first26=L. N.|last27= DePoy|first27=D. L.|last28= Desai|first28=S.|last29= Diehl|first29=H. T.|last30= Eifler|first30=T. F.|display-authors=29|year=2016|doi=10.3847/1538-4357/aa6113|volume=838|issue=1|journal=The Astrophysical Journal|page=8|bibcode = 2017ApJ...838....8L |url=http://sro.sussex.ac.uk/68039/1/__smbhome.uscs.susx.ac.uk_bw233_Desktop_Kathy%20Romer%20SRO_10.3847-1538-4357-aa6113.pdf}} 27. ^{{Cite journal|last1=Mediavilla |first1=E. |title=Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing |journal=The Astrophysical Journal |volume=836 |issue=2 |pages=L18 |last2=Jimenez-Vicente |first2=J. |last3=Munoz |first3=J. A. |last4=Vives Arias |first4=H. |last5=Calderon-Infante |first5=J. |arxiv=1702.00947|year=2017 |doi=10.3847/2041-8213/aa5dab |bibcode = 2017ApJ...836L..18M }} 28. ^{{Cite journal|last1=Diego |first1=Jose M. |title=Dark matter under the microscope: Constraining compact dark matter with caustic crossing events |journal=The Astrophysical Journal |volume=857 |issue=1 |pages=25 |arxiv=1706.10281|year=2017|bibcode=2018ApJ...857...25D|doi=10.3847/1538-4357/aab617|hdl=10150/627627 }} 29. ^{{Cite journal|last1=Tashiro |first1=H. |title=The effect of primordial black holes on 21 cm fluctuations |journal=Monthly Notices of the Royal Astronomical Society |volume=435 |issue=4 |pages=3001 |last2=Sugiyama |first2=N. |arxiv=1207.6405|year=2012 |doi=10.1093/mnras/stt1493 |bibcode = 2013MNRAS.435.3001T }} 30. ^{{cite journal |last=Clesse |first=S. |last2=Garcia-Bellido |first2=J. |year=2017 |title=The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with Advanced LIGO |journal=Physics of the Dark Universe |volume=10 |issue=2016 |pages=142–147 |arxiv=1603.05234 |bibcode= 2017PDU....15..142C|doi=10.1016/j.dark.2016.10.002}} 31. ^{{Cite journal|last1=Cholis |first1=I. |last2=Kovetz |first2=E.D. |last3=Ali-Haimoud |first3=Y. |last4=Bird |first4=S. |last5=Kamionkowski |first5=M. |last6=Munoz |first6=J. |last7=Raccanelli |first7=A. |title=Orbital eccentricities in primordial black hole binaries |journal=Physical Review D |volume=94 |issue=8 |pages=084013 |arxiv=1606.07437|year=2016 |doi=10.1103/PhysRevD.94.084013 |bibcode = 2016PhRvD..94h4013C }} 32. ^{{cite arXiv|last1=Clesse |first1=Sebastien |last2=Garcia-Bellido |first2=Juan |title=Detecting the gravitational wave background from primordial black hole dark matter|eprint=1610.08479|class=astro-ph.CO |year=2016 }} 33. ^{{cite journal|last1=Khriplovich|first1=I. B.|last2=Pomeransky|first2=A. A.|last3=Produit|first3=N.|last4=Ruban|first4=G. Yu.|title=Can one detect passage of a small black hole through the Earth?|journal=Physical Review D|year=2008|volume=77|issue=6|pages=064017|arxiv=0710.3438|doi=10.1103/PhysRevD.77.064017|bibcode=2008PhRvD..77f4017K}} 34. ^I. B. Khriplovich, A. A. Pomeransky, N. Produit and G. Yu. Ruban, Passage of small black hole through the Earth. Is it detectable?, [https://arxiv.org/abs/0801.4623 preprint] 35. ^{{cite web |url=http://www.space.com/13026-dark-matter-primordial-black-holes.html |title=Primitive Black Holes Could Shine}} 36. ^{{Cite journal|title=Transient Solar Oscillations Driven by Primordial Black Holes|journal=Physical Review Letters|volume=107|issue=11|pages=111101|doi=10.1103/PhysRevLett.107.111101|pmid=22026654|year=2011|last1=Kesden|first1=Michael|last2=Hanasoge|first2=Shravan|bibcode=2011PhRvL.107k1101K|arxiv = 1106.0011 }} 37. ^{{Cite journal|title=Primordial black hole detection through diffractive microlensing|journal=Physical Review D|volume=97|issue=10|pages=103507|doi=10.1103/PhysRevD.97.103507|year=2018|last1=Naderi|first1= Tayebeh|last2=Mehrabi|first2=Ahmad|last3=Rahvar|first3=Sohrab|arxiv = 1711.06312 |bibcode=2018PhRvD..97j3507N}} 38. ^{{cite journal | author = D. Stojkovic | author2 = K. Freese | author3 = G. D. Starkman | last-author-amp = yes | title = Holes in the walls: primordial black holes as a solution to the cosmological domain wall problem | journal = Phys. Rev. D | volume = 72 | issue = 4 | date = 2005 | doi = 10.1103/PhysRevD.72.045012 | page = 045012|arxiv = hep-ph/0505026 |bibcode = 2005PhRvD..72d5012S }} [https://arxiv.org/abs/hep-ph/0505026 preprint] 39. ^{{cite journal | author = D. Stojkovic |author2=K. Freese | title = A black hole solution to the cosmological monopole problem | journal = Phys. Lett. B | volume = 606 | issue = 3–4 | pages = 251–257 | date = 2005 | doi = 10.1016/j.physletb.2004.12.019|arxiv = hep-ph/0403248 |bibcode = 2005PhLB..606..251S }} [https://arxiv.org/abs/hep-ph/0403248 preprint] 40. ^McKee, Maggie. (2006) NewScientistSpace.com – Satellite could open door on extra dimension
2 : String theory|Cosmology |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。