请输入您要查询的百科知识:

 

词条 Mackey space
释义

  1. Examples

  2. Properties

  3. References

In mathematics, particularly in functional analysis, a Mackey space is a locally convex topological vector space X such that the topology of X coincides with the Mackey topology τ(X,X′), the finest topology which still preserves the continuous dual.

Examples

Examples of Mackey spaces include:

  • All bornological spaces.
  • All Hausdorff locally convex quasi-barrelled (and hence all Hausdorff locally convex barrelled spaces and all Hausdorff locally convex reflexive spaces).
  • All Hausdorff locally convex metrizable spaces.[1]
  • All Hausdorff locally convex barreled spaces.[1]
  • The product, locally convex direct sum, and the inductive limit of a family of Mackey spaces is a Mackey space.[2]

Properties

  • A locally convex space with continuous dual is a Mackey space if and only if each convex and -relatively compact subset of is equicontinuous.
  • The completion of a Mackey space is again a Mackey space.[3]
  • A separated quotient of a Mackey space is again a Mackey space.
  • A Mackey space need not be separable, complete, quasi-barrelled, nor -quasi-barrelled.

References

1. ^Schaefer (1999) p. 132
2. ^Schaefer (1999) p. 138
3. ^Schaefer (1999) p. 133
  • {{cite book |last=Robertson |first=A.P. |author2=W.J. Robertson |title= Topological vector spaces |series=Cambridge Tracts in Mathematics |volume=53 |year=1964 |publisher= Cambridge University Press | page=81 }}
  • {{cite book | author=H.H. Schaefer | title=Topological Vector Spaces | publisher=Springer-Verlag | series=GTM | volume=3 | date=1970 | isbn=0-387-05380-8 | pages=132–133 }}
  • {{cite book | author=S.M. Khaleelulla | title=Counterexamples in Topological Vector Spaces | publisher=Springer-Verlag | series=GTM | volume=936 | date=1982 | isbn=978-3-540-11565-6 | pages=31, 41, 55-58 }}
{{Functional Analysis}}{{mathanalysis-stub}}

1 : Topological vector spaces

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 22:48:24