词条 | Radial function |
释义 |
In mathematics, a radial function is a function defined on a Euclidean space Rn whose value at each point depends only on the distance between that point and the origin. For example, a radial function Φ in two dimensions has the form where φ is a function of a single non-negative real variable. Radial functions are contrasted with spherical functions, and any decent function (e.g., continuous and rapidly decreasing) on Euclidean space can be decomposed into a series consisting of radial and spherical parts: the solid spherical harmonic expansion. A function is radial if and only if it is invariant under all rotations leaving the origin fixed. That is, ƒ is radial if and only if for all {{nowrap|ρ ∈ SO(n)}}, the special orthogonal group in n dimensions. This characterization of radial functions makes it possible also to define radial distributions. These are distributions S on Rn such that for every test function φ and rotation ρ. Given any (locally integrable) function ƒ, its radial part is given by averaging over spheres centered at the origin. To wit, where ωn−1 is the surface area of the (n−1)-sphere Sn−1, and {{nowrap|1=r = {{abs|x}}}}, {{nowrap|1=x′ = x/r}}. It follows essentially by Fubini's theorem that a locally integrable function has a well-defined radial part at almost every r. The Fourier transform of a radial function is also radial, and so radial functions play a vital role in Fourier analysis. Furthermore, the Fourier transform of a radial function typically has stronger decay behavior at infinity than non-radial functions: for radial functions bounded in a neighborhood of the origin, the Fourier transform decays faster than R−(n−1)/2. The Bessel functions are a special class of radial function that arise naturally in Fourier analysis as the radial eigenfunctions of the Laplacian; as such they appear naturally as the radial portion of the Fourier transform. See also
References
3 : Harmonic analysis|Rotational symmetry|Types of functions |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。