请输入您要查询的百科知识:

 

词条 Redescending M-estimator
释义

  1. Advantages

  2. Disadvantages

  3. Choosing redescending Ψ functions

  4. Examples

  5. References

  6. See also

{{inline|date=September 2010}}{{Expert-subject|statistics|date=September 2010}}

In statistics, Redescending M-estimators are Ψ-type M-estimators which have ψ functions that are non-decreasing near the origin, but decreasing toward 0 far from the origin. Their ψ functions can be chosen to redescend smoothly to zero, so that they usually satisfy ψ(x) = 0 for all x with |x| > r, where r is referred to as the minimum rejection point.

Due to these properties of the ψ function, these kinds of estimators are very efficient, have a high breakdown point and, unlike other outlier rejection techniques, they do not suffer from a masking effect. They are efficient because they completely reject gross outliers, and do not completely ignore moderately large outliers (like median).

Advantages

Redescending M-estimators have high breakdown points (close to 0.5), and their Ψ function can be chosen to redescend smoothly to 0. This means that moderately large outliers are not ignored completely, and greatly improves the efficiency of the redescending M-estimator.

The redescending M-estimators are slightly more efficient than the Huber estimator for several symmetric, wider tailed distributions, but about 20% more efficient than the Huber estimator for the Cauchy distribution. This is because they completely reject gross outliers, while the Huber estimator effectively treats these the same as moderate outliers.

As other M-estimators, but unlike other outlier rejection techniques, they do not suffer from masking effects.

Disadvantages

The M-estimating equation for a redescending estimator may not have a unique solution.

Choosing redescending Ψ functions

When choosing a redescending Ψ function, care must be taken such that it does not descend too steeply, which may have a very bad influence on the denominator in the expression for the asymptotic variance

where F is the mixture model distribution.

This effect is particularly harmful when a large negative value of ψ'(x) combines with a large positive value of ψ2(x), and there is a cluster of outliers near x.

Examples

1. Hampel's three-part M estimators have Ψ functions which are odd functions and defined for any x by:

This function is plotted in the following figure for a=1.645, b=3 and r=6.5.

2. Tukey's biweight or bisquare M estimators have Ψ functions for any positive k, which defined by:

This function is plotted in the following figure for k=5.

3. Andrew's sine wave M estimator has the following Ψ function:

This function is plotted in the following figure.

References

  • Redescending M-estimators, Shevlyakov, G, Morgenthaler, S and Shurygin, A. M., J Stat Plann Inference 138:2906-2917, 2008.
  • Robust Estimation and Testing, Robert G. Staudte and Simon J. Sheather, Wiley 1990.
  • Robust Statistics,Huber, P., New York: Wiley, 1981.

See also

  • M-estimator
  • Robust statistics

2 : Robust statistics|M-estimators

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 18:25:00