请输入您要查询的百科知识:

 

词条 Runcinated 8-simplexes
释义

  1. Runcinated 8-simplex

     Alternate names    Coordinates    Images  

  2. Biruncinated 8-simplex

     Alternate names    Coordinates    Images  

  3. Triruncinated 8-simplex

     Alternate names    Coordinates    Images  

  4. Runcitruncated 8-simplex

      Images  

  5. Biruncitruncated 8-simplex

      Images  

  6. Triruncitruncated 8-simplex

      Images  

  7. Runcicantellated 8-simplex

      Images  

  8. Biruncicantellated 8-simplex

      Images  

  9. Runcicantitruncated 8-simplex

      Images  

  10. Biruncicantitruncated 8-simplex

      Images  

  11. Triruncicantitruncated 8-simplex

      Images  

  12. Related polytopes

  13. Notes

  14. References

  15. External links

8-simplex
{{CDD>node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
Runcinated 8-simplex
{{CDD>node_1|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node}}
Biruncinated 8-simplex
{{CDD>node|3|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node}}
Triruncinated 8-simplex
{{CDD>node|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node}}
Runcitruncated 8-simplex
{{CDD>node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node|3|node}}
Biruncitruncated 8-simplex
{{CDD>node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node}}
Triruncitruncated 8-simplex
{{CDD>node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node}}
Runcicantellated 8-simplex
{{CDD>node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node}}
Biruncicantellated 8-simplex
{{CDD>node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node}}
Runcicantitruncated 8-simplex
{{CDD>node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node|3|node}}
Biruncicantitruncated 8-simplex
{{CDD>node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node}}
Triruncicantitruncated 8-simplex
{{CDD>node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}
Orthogonal projections in A8 Coxeter plane

In eight-dimensional geometry, a runcinated 8-simplex is a convex uniform 8-polytope with 3rd order truncations (runcination) of the regular 8-simplex.

There are eleven unique runcinations of the 8-simplex, including permutations of truncation and cantellation. The triruncinated 8-simplex and triruncicantitruncated 8-simplex have a doubled symmetry, showing [18] order reflectional symmetry in the A8 Coxeter plane.

Runcinated 8-simplex

Runcinated 8-simplex
Typeuniform 8-polytope
Schläfli symbol t0,3{3,3,3,3,3,3,3}
Coxeter-Dynkin diagramsnode_1|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node}}
6-faces
5-faces
4-faces
Cells
Faces
Edges4536
Vertices504
Vertex figure
Coxeter groupA8, [37], order 362880
Propertiesconvex

Alternate names

  • Runcinated enneazetton
  • Small prismated enneazetton (Acronym: spene) (Jonathan Bowers)[1]

Coordinates

The Cartesian coordinates of the vertices of the runcinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,2). This construction is based on facets of the runcinated 9-orthoplex.

Images

{{8-simplex Coxeter plane graphs|t03|120px}}

Biruncinated 8-simplex

Biruncinated 8-simplex
Typeuniform 8-polytope
Schläfli symbol t1,4{3,3,3,3,3,3,3}
Coxeter-Dynkin diagramnode|3|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node}}
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges11340
Vertices1260
Vertex figure
Coxeter groupA8, [37], order 362880
Propertiesconvex

Alternate names

  • Biruncinated enneazetton
  • Small biprismated enneazetton (Acronym: sabpene) (Jonathan Bowers)[2]

Coordinates

The Cartesian coordinates of the vertices of the biruncinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,1,1,2,2). This construction is based on facets of the biruncinated 9-orthoplex.

Images

{{8-simplex Coxeter plane graphs|t14|120px}}

Triruncinated 8-simplex

Triruncinated 8-simplex
Typeuniform 8-polytope
Schläfli symbol t2,5{3,3,3,3,3,3,3}
Coxeter-Dynkin diagramsnode|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node}}
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges15120
Vertices1680
Vertex figure
Coxeter groupA8×2, [[37]], order 725760
Propertiesconvex

Alternate names

  • Triruncinated enneazetton
  • Small triprismated enneazetton (Acronym: satpeb) (Jonathan Bowers)[3]

Coordinates

The Cartesian coordinates of the vertices of the triruncinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,1,1,1,2,2,2). This construction is based on facets of the triruncinated 9-orthoplex.

Images

{{8-simplex2 Coxeter plane graphs|t25|120px}}

Runcitruncated 8-simplex

{{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node|3|node}}

Images

{{8-simplex2 Coxeter plane graphs|t013|120px}}

Biruncitruncated 8-simplex

{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node}}

Images

{{8-simplex2 Coxeter plane graphs|t124|120px}}

Triruncitruncated 8-simplex

{{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node}}

Images

{{8-simplex2 Coxeter plane graphs|t235|120px}}

Runcicantellated 8-simplex

{{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node}}

Images

{{8-simplex2 Coxeter plane graphs|t023|120px}}

Biruncicantellated 8-simplex

{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node}}

Images

{{8-simplex2 Coxeter plane graphs|t134|120px}}

Runcicantitruncated 8-simplex

{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node|3|node}}

Images

{{8-simplex2 Coxeter plane graphs|t0123|120px}}

Biruncicantitruncated 8-simplex

{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node}}

Images

{{8-simplex2 Coxeter plane graphs|t1234|120px}}

Triruncicantitruncated 8-simplex

{{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}

Images

{{8-simplex2 Coxeter plane graphs|t2345|120px}}

Related polytopes

This polytope is one of 135 uniform 8-polytopes with A8 symmetry.

{{Enneazetton family}}

Notes

1. ^Klitzing (x3o3o3x3o3o3o3o - spene)
2. ^Klitzing (o3x3o3o3x3o3o3o - sabpene)
3. ^Klitzing (o3o3x3o3o3x3o3o - satpeb)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}  
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polyzetta.htm|8D|uniform polytopes (polyzetta)}} x3o3o3x3o3o3o3o - spene, o3x3o3o3x3o3o3o - sabpene, o3o3x3o3o3x3o3o - satpeb

External links

  • [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
  • Multi-dimensional Glossary
{{Polytopes}}

1 : 8-polytopes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 5:56:19