请输入您要查询的百科知识:

 

词条 Matrix of ones
释义

  1. Properties

  2. Applications

  3. References

In mathematics, a matrix of ones or all-ones matrix is a matrix where every element is equal to one.[1] Examples of standard notation are given below:

Some sources call the all-ones matrix the unit matrix,[2] but that term may also refer to the identity matrix, a different matrix.

Properties

For an {{math|n × n}} matrix of ones J, the following properties hold:

  • The trace of J is n,[3] and the determinant is 1 if n is 1, or 0 otherwise.
  • The characteristic polynomial of J is .
  • The rank of J is 1 and the eigenvalues are n with multiplicity 1 and 0 with multiplicity {{math|n − 1}}.[4]
  • for [5]
  • J is the neutral element of the Hadamard product.[6]

When J is considered as a matrix over the real numbers, the following additional properties hold:

  • J is positive semi-definite matrix.
  • The matrix is idempotent.[5]
  • The matrix exponential of J is

Applications

The all-ones matrix arises in the mathematical field of combinatorics, particularly involving the application of algebraic methods to graph theory. For example, if A is the adjacency matrix of a n-vertex undirected graph G, and J is the all-ones matrix of the same dimension, then G is a regular graph if and only if AJ = JA.[7] As a second example, the matrix appears in some linear-algebraic proofs of Cayley's formula, which gives the number of spanning trees of a complete graph, using the matrix tree theorem.

References

1. ^{{citation|title=Matrix Analysis|first1=Roger A.|last1=Horn|first2=Charles R.|last2=Johnson|author2-link= Charles Royal Johnson |publisher=Cambridge University Press|year= 2012|isbn=9780521839402|page=8|url=https://books.google.com/books?id=5I5AYeeh0JUC&pg=PA8|contribution=0.2.8 The all-ones matrix and vector}}.
2. ^{{MathWorld|title=Unit Matrix|urlname=UnitMatrix}}
3. ^{{citation|title=Algebraic Combinatorics: Walks, Trees, Tableaux, and More|publisher=Springer|year=2013|isbn=9781461469988|first=Richard P.|last=Stanley|authorlink=Richard P. Stanley|url=https://books.google.com/books?id=_Tc_AAAAQBAJ&pg=PA4|at=Lemma 1.4, p. 4}}.
4. ^{{harvtxt|Stanley|2013}}; {{harvtxt|Horn|Johnson|2012}}, [https://books.google.com/books?id=5I5AYeeh0JUC&pg=PA65 p. 65].
5. ^{{citation|title=Applied Multivariate Analysis|series=Springer texts in statistics|first=Neil H.|last=Timm|publisher=Springer|year=2002|isbn=9780387227719|page=30|url=https://books.google.com/books?id=vtiyg6fnnskC&pg=PA30}}.
6. ^{{citation|title=Introduction to Abstract Algebra|first=Jonathan D. H.|last=Smith|publisher=CRC Press|year=2011|isbn=9781420063721|page=77|url=https://books.google.com/books?id=PQUAQh04lrUC&pg=PA77}}.
7. ^{{citation|title=Algebraic Combinatorics|first=Chris|last=Godsil|authorlink= Chris Godsil |publisher=CRC Press|year=1993|isbn=9780412041310|url=https://books.google.com/books?id=eADtlNCkkIMC&pg=PA25|at=Lemma 4.1, p. 25}}.
{{Linear-algebra-stub}}

2 : Matrices|1 (number)

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/11 13:38:04