词条 | Self-similarity matrix |
释义 |
In data analysis, the self-similarity matrix is a graphical representation of similar sequences in a data series. Similarity can be explained by different measures, like spatial distance (distance matrix), correlation, or comparison of local histograms or spectral properties (e.g. IXEGRAM[1]). This technique is also applied for the search of a given pattern in a long data series as in gene matching.{{Citation needed|date=November 2013}} A similarity plot can be the starting point for dot plots or recurrence plots. DefinitionTo construct a self-similarity matrix, one first transforms a data series into an ordered sequence of feature vectors , where each vector describes the relevant features of a data series in a given local interval. Then the self-similarity matrix is formed by computing the similarity of pairs of feature vectors where is a function measuring the similarity of the two vectors, for instance, the inner product . Then similar segments of feature vectors will show up as path of high similarity along diagonals of the matrix.[2] Similarity plots are used for action recognition that is invariant to point of view [3] and for audio segmentation using spectral clustering of the self-similarity matrix.[4] ExampleSee also
References1. ^{{cite journal|author1= M. A. Casey |author2=A. Westner|title=Separation of mixed audio sources by independent subspace analysis|journal=Proc. Int. Comput. Music Conf|date=July -00 2000|url=http://www.merl.com/papers/docs/TR2001-31.pdf|accessdate=2013-11-19}} 2. ^{{cite journal|last=Müller|first=Meinard|author2=Michael Clausen |title=Transposition-invariant self-similarity matrices|journal=Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007)|year=2007|pages=47–50|url=http://ismir2007.ismir.net/proceedings/ISMIR2007_p047_mullermuller.pdf|accessdate=2013-11-19}} 3. ^{{cite book |author1=I.N. Junejo |author2=E. Dexter |author3=I. Laptev |author4=Patrick Pérez | title=Cross-View Action Recognition from Temporal Self-Similarities | journal=In Proc. European Conference on Computer Vision (ECCV), Marseille, France. |volume=5303 |pages=293–306 | year=2008 | doi=10.1007/978-3-540-88688-4_22|series=Lecture Notes in Computer Science |isbn=978-3-540-88685-3 |citeseerx=10.1.1.405.1518 }} 4. ^{{cite journal|last=Dubnov|first=Shlomo|author2=Ted Apel |title=Audio segmentation by singular value clustering|journal=Proceedings of Computer Music Conference (ICMC 2004)|year=2004|citeseerx=10.1.1.324.4298}} 5. ^Cross-View Action Recognition from Temporal Self-Similarities (2008), I. Junejo, E. Dexter, I. Laptev, and Patrick Pérez) Further reading
|author1=N. Marwan |author2=M. C. Romano |author3=M. Thiel |author4=J. Kurths | title=Recurrence Plots for the Analysis of Complex Systems | journal=Physics Reports | volume=438 | issue=5–6 | year=2007 | doi=10.1016/j.physrep.2006.11.001 | pages=237 | bibcode=2007PhR...438..237M }}
| author=J. Foote | title=Visualizing Music and Audio using Self-Similarity | journal=In: Proceedings of ACM Multimedia '99, Orlando, Florida. | pages=77–80 | year=1999 | doi=10.1145/319463.319472 | isbn=978-1581131512 | citeseerx=10.1.1.223.194
| author=M. A. Casey | title=Sound Classification and Similarity Tools | publisher=J. Wiley | year=2002 | pages=309–323 | editors=B.S. Manjunath, P. Salembier and T. Sikora | journal=Introduction to MPEG-7: Multimedia Content Description Language | isbn=978-0471486787 }}
2 : Statistical charts and diagrams|Visualization (graphic) |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。