请输入您要查询的百科知识:

 

词条 Mediterranean Sea
释义

  1. Names and etymology

  2. History

     Ancient civilizations  Middle Ages and empires  21st century and migrations 

  3. Geography

     Extent  Coastal countries  Coastal cities  Subdivisions  Other seas  Other features  Ten largest islands by area  Climate  Sea temperature 

  4. Oceanography

     General circulation  Other events affecting water circulation  Climate change 

  5. Biogeochemistry

  6. Geology

     Tectonics and paleoenvironmental analysis  Messinian salinity crisis  Desiccation and exchanges of flora and fauna  Shift to a "Mediterranean climate" 

  7. Paleoclimate

  8. Biodiversity

  9. Environmental issues

     Natural hazards  Invasive species  Arrival of new tropical Atlantic species  Sea-level rise  Pollution  Shipping  Tourism  Overfishing 

  10. Gallery

  11. See also

  12. References

  13. External links

{{Redirect|Mediterranean|other uses|Mediterranean (disambiguation)}}{{short description|Sea connected to the Atlantic Ocean between Europe, Africa and Asia}}{{Use dmy dates|date=August 2014}}{{Infobox body of water
| name = Mediterranean Sea
| image = Mediterranee 02 EN.jpg
| caption = Map of the Mediterranean Sea
| image_bathymetry =
| caption_bathymetry =
| coords = {{Coord|35|N|18|E|region:XZ_type:waterbody_scale:25000000|display=inline,title}}
| type = Sea
| inflow = Atlantic Ocean, Sea of Marmara, Nile, Ebro, Rhône, Chelif, Po
| outflow =
| catchment =
| basin_countries = {{hidden | fw1=normal | headerstyle=text-align:left
| header = about 60
| content =
  • Abkhazia {{small|(independence disputed, claimed by Georgia)}}
  • Albania
  • Algeria
  • Andorra
  • Austria
  • Belarus
  • Bosnia and Herzegovina
  • Bulgaria
  • Burundi
  • Chad
  • Democratic Republic of the Congo
  • Croatia
  • Cyprus
  • Czech Republic
  • Egypt
  • Eritrea
  • Ethiopia
  • France
  • Georgia
  • Germany
  • Gibraltar (UK)
  • Greece
  • Hungary
  • Israel
  • Italy
  • Kenya
  • Kosovo {{small|(independence disputed, claimed by Serbia)}}
  • Lebanon
  • Libya
  • Liechtenstein
  • Malta
  • Moldova
  • Monaco
  • Montenegro
  • Morocco
  • Niger
  • Northern Cyprus {{small|(independence disputed, claimed by Cyprus)}}
  • North Macedonia
  • State of Palestine {{small|(a de jure sovereign state)}}
  • Poland
  • Romania
  • Russia
  • Rwanda
  • San Marino
  • Serbia
  • Slovakia
  • Slovenia
  • South Ossetia {{small|(independence disputed, claimed by Georgia)}}
  • South Sudan
  • Spain
  • Sudan
  • Switzerland
  • Syria
  • Tanzania
  • Transnistria {{small|(independence disputed, claimed by Moldova)}}
  • Tunisia
  • Turkey
  • Uganda
  • Ukraine
  • Vatican City

}}


| length =
| width =
| area = {{convert|2500000|km2|sqmi|abbr=on}}
| depth = {{convert|1500|m|ft|abbr=on}}
| max-depth = {{convert|5267|m|ft|abbr=on}}
| volume = {{convert|3750000|km3|cumi|abbr=on}}
| residence_time = 80–100 years[1]
| shore =
| elevation =
| frozen =
| islands = 3300+
| cities = Alexandria, Algiers, Athens, Barcelona, Beirut, Carthage, Dubrovnik, Istanbul, İzmir, Rome, Split, Tangier, Tel Aviv, Tripoli, Tunis (full list)
| reference =
}}

The Mediterranean Sea is a sea connected to the Atlantic Ocean, surrounded by the Mediterranean Basin and almost completely enclosed by land: on the north by Southern Europe and Anatolia, on the south by North Africa and on the east by the Levant. Although the sea is sometimes considered a part of the Atlantic Ocean, it is usually identified as a separate body of water. Geological evidence indicates that around 5.9 million years ago, the Mediterranean was cut off from the Atlantic and was partly or completely desiccated over a period of some 600,000 years, the Messinian salinity crisis, before being refilled by the Zanclean flood about 5.3 million years ago.

It covers an approximate area of 2.5 million km2[2] (965,000 sq mi), representing 0.7 % of the global ocean surface, but its connection to the Atlantic (the Strait of Gibraltar) is only {{convert|14|km|mi|abbr=on}} wide. The Strait of Gibraltar is a narrow strait that connects the Atlantic Ocean to the Mediterranean Sea and separates Spain in Europe from Morocco in Africa. In oceanography, it is sometimes called the Eurafrican Mediterranean Sea or the European Mediterranean Sea to distinguish it from mediterranean seas elsewhere.[3][4]

The Mediterranean Sea has an average depth of {{convert|1500|m|ft|abbr=on}} and the deepest recorded point is {{convert|5267|m|ft|abbr=on}} in the Calypso Deep in the Ionian Sea. The sea is bordered on the north by Europe, the east by Asia, and in the south by Africa. It is located between latitudes 30° and 46° N and longitudes 6° W and 36° E. Its west-east length, from the Strait of Gibraltar to the Gulf of Iskenderun, on the southwestern coast of Turkey, is approximately 4,000 km (2,500 miles). The sea's average north-south length, from Croatia's southern shore to Libya, is approximately 800 km (500 miles).

The sea was an important route for merchants and travellers of ancient times that allowed for trade and cultural exchange between emergent peoples of the region. The history of the Mediterranean region is crucial to understanding the origins and development of many modern societies.

The countries surrounding the Mediterranean in clockwise order are Spain, France, Monaco, Italy, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Albania, Greece, Turkey, Syria, Lebanon, Israel, Egypt, Libya, Tunisia, Algeria, and Morocco; Malta and Cyprus are island countries in the sea. In addition, the Gaza Strip and the British Overseas Territories of Gibraltar and Akrotiri and Dhekelia have coastlines on the sea.

Names and etymology

The Ancient Greeks called the Mediterranean simply {{lang|grc|ἡ θάλασσα}} (hē thálassa; "the Sea") or sometimes {{lang|grc|ἡ μεγάλη θάλασσα}} (hē megálē thálassa; "the Great Sea"), {{lang|grc|ἡ ἡμέτερα θάλασσα}} (hē hēmétera thálassa; "Our Sea"), or {{lang|grc|ἡ θάλασσα ἡ καθ'ἡμᾶς}} (hē thálassa hē kath’hēmâs; "the sea around us").

The Romans called it Mare Magnum ("Great Sea") or Mare Internum ("Internal Sea") and, starting with the Roman Empire, Mare Nostrum ("Our Sea"). The term Mare Mediterrāneum appears later: Solinus apparently used it in the 3rd century, but the earliest extant witness to it is in the 6th century, in Isidore of Seville.[5][6] It means 'in the middle of land, inland' in Latin, a compound of medius ("middle"), terra ("land, earth"), and -āneus ("having the nature of").

The Latin word is a calque of Greek {{lang|grc|μεσόγειος}} (mesógeios; "inland"), from {{lang|grc|μέσος}} (mésos, "in the middle") and {{lang|grc|γήινος}} (gḗinos, "of the earth"), from {{lang|grc|γῆ}} (, "land, earth"). The original meaning may have been 'the sea in the middle of the earth', rather than 'the sea enclosed by land'.[6][7]

The Carthaginians called it the "Syrian Sea". In ancient Syrian texts, Phoenician epics and in the Hebrew Bible, it was primarily known as the "Great Sea" ({{Hebrew|הַיָּם הַגָּדוֹל}}, HaYam HaGadol, Numbers 34:6,7; Joshua 1:4, 9:1, 15:47; Ezekiel 47:10,15,20) or simply as "The Sea" (1 Kings 5:9; compare 1 Macc. 14:34, 15:11); however, it has also been called the "Hinder Sea" ({{Hebrew|הַיָּם הָאַחֲרוֹן}}) because of its location on the west coast of Greater Syria or the Holy Land (and therefore behind a person facing the east), which is sometimes translated as "Western Sea", (Deut. 11:24; Joel 2:20). Another name was the "Sea of the Philistines" ({{Hebrew|יָם פְּלִשְׁתִּים}}, Exod. 23:31), from the people inhabiting a large portion of its shores near the Israelites. In Modern Hebrew, it is called HaYam HaTikhon ({{Hebrew|הַיָּם הַתִּיכוֹן}}) 'the Middle Sea'.[9]

In Modern Arabic, it is known as {{transl|ar|ALA|al-Baḥr [al-Abyaḍ] al-Mutawassiṭ}} ({{lang|ar|البحر [الأبيض] المتوسط}}) 'the [White] Middle Sea'. In Islamic and older Arabic literature, it was Baḥr al-Rūm(ī) ({{lang|ar|بحر الروم}} or {{lang|ar|بحر الرومي}}}) 'the Sea of the Romans' or 'the Roman Sea'. At first, that name referred to only the Eastern Mediterranean, but it was later extended to the whole Mediterranean. Other Arabic names were Baḥr al-šām(ī) ({{lang|ar|بحر الشام}}) 'the Sea of Syria' and Baḥr al-Maghrib ({{lang|ar|بحرالمغرب}}) 'the Sea of the West'.[8][9]

In Turkish, it is the Akdeniz 'the White Sea'; in Ottoman, ﺁق دكيز, which sometimes means only the Aegean Sea.[10] The origin of the name is not clear, as it is not known in earlier Greek, Byzantine or Islamic sources. It may be to contrast with the Black Sea.[8][11][12] In Persian, the name was translated as Baḥr-i Safīd, which was also used in later Ottoman Turkish. It is probably the origin of the colloquial Greek phrase {{lang|grc|Άσπρη Θάλασσα}} (Άspri Thálassa, lit. "White Sea").[8]

Johann Knobloch claims that in Classical Antiquity, cultures in the Levant used colours to refer to the cardinal points: black referred to the north (explaining the name Black Sea), yellow or blue to east, red to south (i.e., the Red Sea), and white to west. This would explain both the Turkish Akdeniz (White Sea) and the Arab nomenclature described above.[13]

History

{{Main|History of the Mediterranean region}}

Ancient civilizations

Several ancient civilizations were located around the Mediterranean shores and were greatly influenced by their proximity to the sea. It provided routes for trade, colonization, and war, as well as food (from fishing and the gathering of other seafood) for numerous communities throughout the ages.[14]

Due to the shared climate, geology, and access to the sea, cultures centered on the Mediterranean tended to have some extent of intertwined culture and history.

Two of the most notable Mediterranean civilizations in classical antiquity were the Greek city states and the Phoenicians, both of which extensively colonized the coastlines of the Mediterranean. Later, when Augustus founded the Roman Empire, the Romans referred to the Mediterranean as Mare Nostrum ("Our Sea"). For the next 400 years, the Roman Empire completely controlled the Mediterranean Sea and virtually all its coastal regions from Gibraltar to the Levant.

Darius I of Persia, who conquered Ancient Egypt, built a canal linking the Mediterranean to the Red Sea. Darius's canal was wide enough for two triremes to pass each other with oars extended, and required four days to traverse.[15]

Middle Ages and empires

The Western Roman Empire collapsed around AD 476. Temporarily the east was again dominant as Roman power lived on in the Byzantine Empire formed in the 4th century from the eastern half of the Roman Empire. Another power arose in the 7th century, and with it the religion of Islam, which soon swept across from the east; at its greatest extent, the Arab Empire controlled 75% of the Mediterranean region and left a lasting footprint on its eastern and southern shores.

The Arab invasions disrupted the trade relations between Western and Eastern Europe while cutting the trade route with Oriental lands. This, however, had the indirect effect of promoting the trade across the Caspian Sea. The export of grains from Egypt was re-routed towards the Eastern world. Oriental goods like silk and spices were carried from Egypt to ports like Venice and Constantinople by sailors and Jewish merchants. The Viking raids further disrupted the trade in western Europe and brought it to a halt. However, the Norsemen developed the trade from Norway to the White Sea, while also trading in luxury goods from Spain and the Mediterranean. The Byzantines in the mid-8th century retook control of the area around the north-eastern part of the Mediterranean. Venetian ships from the 9th century armed themselves to counter the harassment by Arabs while concentrating trade of oriental goods at Venice.[16]

The Fatimids maintained trade relations with the Italian city-states like Amalfi and Genoa before the Crusades, according to the Cairo Geniza documents. A document dated 996 mentions Amalfian merchants living in Cairo. Another letter states that the Genoese had traded with Alexandria. The caliph al-Mustansir had allowed Amalfian merchants to reside in Jerusalem about 1060 in place of the Latin hospice.[17]

The Crusades led to flourishing of trade between Europe and the outremer region.[18] Genoa, Venica and Pisa created colonies in regions controlled by the Crusaders and came to control the trade with the Orient. These colonies also allowed them to trade with the Eastern world. Though the fall of the Crusader states and attempts at banning of trade relations with Muslim states by the Popes temporarily disrupted the trade with the Orient, it however continued.[19]

Europe started to revive, however, as more organized and centralized states began to form in the later Middle Ages after the Renaissance of the 12th century.

Ottoman power based in Anatolia continued to grow, and in 1453 extinguished the Byzantine Empire with the Conquest of Constantinople. Ottomans gained control of much of the sea in the 16th century and maintained naval bases in southern France (1543–1544), Algeria and Tunisia. Barbarossa, the famous Ottoman captain is a symbol of this domination with the victory of the Battle of Preveza (1538). The Battle of Djerba (1560) marked the apex of Ottoman naval domination in the Mediterranean. As the naval prowess of the European powers increased, they confronted Ottoman expansion in the region when the Battle of Lepanto (1571) checked the power of the Ottoman Navy. This was the last naval battle to be fought primarily between galleys.

The Barbary pirates of Northwest Africa preyed on Christian shipping and coastlines in the Western Mediterranean Sea.[20] According to Robert Davis, from the 16th to 19th centuries, pirates captured 1 million to 1.25 million Europeans as slaves.[21]

The development of oceanic shipping began to affect the entire Mediterranean. Once, most trade between Western Europe and the East had passed through the region, but after the 1490s the development of a sea route to the Indian Ocean allowed the importation of Asian spices and other goods through the Atlantic ports of western Europe.[22][23][24]

The sea remained strategically important. British mastery of Gibraltar ensured their influence in Africa and Southwest Asia. Wars included Naval warfare in the Mediterranean during World War I and Mediterranean theatre of World War II.

21st century and migrations

{{CSS image crop
|Image = BlackMarble20161km.jpg
|bSize = 2200
|cWidth = 270
|cHeight = 110
|oLeft = 1055
|oTop = 265
|Description = Satellite image of the Mediterranean Sea at night
|Alt =
}}

In 2013 the Maltese president described the Mediterranean sea as a "cemetery" due to the large number of migrants who drowned there after their boats capsized.[25] European Parliament president Martin Schulz said in 2014 that Europe's migration policy "turned the Mediterranean into a graveyard", referring to the number of drowned refugees in the region as a direct result of the policies.[26] An Azerbaijani official described the sea as "a burial ground ... where people die".[27]

Following the 2013 Lampedusa migrant shipwreck, the Italian government decided to strengthen the national system for the patrolling of the Mediterranean Sea by authorising "Operation Mare Nostrum", a military and humanitarian mission in order to rescue the migrants and arrest the traffickers of immigrants. In 2015, more than one million migrants crossed the Mediterranean Sea into Europe.[28]

Italy was particularly affected by the European migrant crisis. Since 2013, over 700,000 migrants have landed in Italy,[29] mainly sub-Saharan Africans.[30]

Geography

{{multiple image
| width = 180
| footer =
| image1 = STS059-238-074 Strait of Gibraltar.jpg
| alt1 =
| caption1 = A satellite image showing the Mediterranean Sea. The Strait of Gibraltar can be seen in the bottom left (north-west) quarter of the image; to its left is the Iberian Peninsula in Europe, and to its right, the Maghreb in Africa.
| image2 = Gallipoli peninsula from space.jpg
| alt2 =
| caption2 = The Dardanelles strait in Turkey. The north side is Europe with the Gelibolu Peninsula in the Thrace region; the south side is Anatolia in Asia.
}}

The Mediterranean Sea is connected to the Atlantic Ocean by the Strait of Gibraltar (known in Homer's writings as the "Pillars of Hercules") in the west and to the Sea of Marmara and the Black Sea, by the Dardanelles and the Bosporus respectively, in the east. The Sea of Marmara (Dardanelles) is often considered a part of the Mediterranean Sea, whereas the Black Sea is generally not. The {{convert|163|km|mi|abbr=on}} long artificial Suez Canal in the southeast connects the Mediterranean Sea to the Red Sea.[11]

Large islands in the Mediterranean include Cyprus, Crete, Euboea, Rhodes, Lesbos, Chios, Kefalonia, Corfu, Limnos, Samos, Naxos and Andros in the Eastern Mediterranean; Sicily, Cres, Krk, Brač, Hvar, Pag, Korčula and Malta in the central Mediterranean; Sardinia, Corsica, and the Balearic Islands: Ibiza, Majorca, and Menorca in the Western Mediterranean.

The typical Mediterranean climate has hot, humid, and dry summers and mild, rainy winters. Crops of the region include olives, grapes, oranges, tangerines, and cork.

Extent

The International Hydrographic Organization defines the limits of the Mediterranean Sea as follows:[31]

Stretching from the Strait of Gibraltar in the west to the entrances to the Dardanelles and the Suez Canal in the east, the Mediterranean Sea is bounded by the coasts of Europe, Africa and Asia, and is divided into two deep basins:

  • Western Basin:
    • On the west: A line joining the extremities of Cape Trafalgar (Spain) and Cape Spartel (Africa).
    • On the northeast: The west coast of Italy. In the Strait of Messina a line joining the north extreme of Cape Paci (15°42'E) with Cape Peloro, the east extreme of the Island of Sicily. The north coast of Sicily.
    • On the east: A line joining Cape Lilibeo the western point of Sicily ({{coord|37|47|N|12|22|E|display=inline}}), through the Adventure Bank to Cape Bon (Tunisia).
  • Eastern Basin:
    • On the west: The northeastern and eastern limits of the Western Basin.
    • On the northeast: A line joining Kum Kale (26°11'E) and Cape Helles, the western entrance to the Dardanelles.
    • On the southeast: The entrance to the Suez Canal.
    • On the east: The coasts of Syria and Israel.

Coastal countries

{{Main list|List of Mediterranean countries}}

The following countries have a coastline on the Mediterranean Sea:

  • Northern shore (from west to east): Spain, France, Monaco, Italy, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Albania, Greece, Turkey.
  • Eastern shore (from north to south): Turkey, Syria, Lebanon, Israel, Egypt.
  • Southern shore (from west to east): Morocco, Algeria, Tunisia, Libya, Egypt.
  • Island nations: Malta, Cyprus.

Several other territories also border the Mediterranean Sea (from west to east): The British overseas territory of Gibraltar, the Spanish autonomous cities of Ceuta and Melilla and nearby islands, the Sovereign Base Areas on Cyprus, and the Palestinian Gaza Strip.

Coastal cities

{{Main list|List of coastal settlements of the Mediterranean Sea}}

Major cities (municipalities) with populations larger than 200,000 people bordering the Mediterranean Sea are:

CountryCities
AlgeriaAlgiers, Annaba, Oran
EgyptAlexandria, Damietta, Port Said
FranceMarseille, Nice
GreeceAthens, Piraeus, Patras, Thessaloniki
IsraelAshdod, Haifa, Netanya, Rishon LeZion, Tel Aviv
ItalyBari, Catania, Genoa, Messina, Naples, Palermo, Rome, Taranto, Trieste, Venice
LebanonBeirut, Tripoli
LibyaBenghazi, Khoms, Misrata, Tripoli, Zawiya, Zliten
MoroccoTétouan, Tangier
PalestineGaza City, Khan Yunis
SpainAlicante, Badalona, Barcelona, Cartagena, Málaga, Palma, Valencia.
SyriaLatakia
TunisiaSfax, Sousse, Tunis
TurkeyAdana, Antalya, Istanbul (through the Sea of Marmara), İzmir, Mersin

Subdivisions

The International Hydrographic Organization (IHO) divides the Mediterranean into a number of smaller waterbodies, each with their own designation (from west to east):[31]

  • the Strait of Gibraltar;
  • the Alboran Sea, between Spain and Morocco;
  • the Balearic Sea, between mainland Spain and its Balearic Islands;
  • the Ligurian Sea between Corsica and Liguria (Italy);
  • the Tyrrhenian Sea enclosed by Sardinia, Italian peninsula and Sicily;
  • the Ionian Sea between Italy, Albania and Greece;
  • the Adriatic Sea between Italy, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro and Albania;
  • the Aegean Sea between Greece and Turkey.

Other seas

Some other seas whose names have been in common use from the ancient times, or in the present:

  • the Sea of Sardinia, between Sardinia and Balearic Islands, as a part of the Balearic Sea
  • the Sea of Sicily between Sicily and Tunisia,
  • the Libyan Sea between Libya and Crete,
  • In the Aegean Sea,
    • the Thracian Sea in its north,
    • the Myrtoan Sea between the Cyclades and the Peloponnese,
    • the Sea of Crete north of Crete,
    • the Icarian Sea between Kos and Chios
  • the Cilician Sea between Turkey and Cyprus
  • the Levantine Sea at the eastern end of the Mediterranean

Many of these smaller seas feature in local myth and folklore and derive their names from these associations.

Other features

In addition to the seas, a number of gulfs and straits are recognised:

  • the Saint George Bay in Beirut, Lebanon
  • the Ras Ibn Hani cape in Latakia, Syria
  • the Ras al-Bassit cape in northern Syria.
  • the Minet el-Beida ("White Harbour") bay near ancient Ugarit, Syria
  • the Strait of Gibraltar, connects the Atlantic Ocean to the Mediterranean Sea and separates Spain from Morocco
  • the Bay of Gibraltar, at the southern end of the Iberian Peninsula
  • the Gulf of Corinth, an enclosed sea between the Ionian Sea and the Corinth Canal
  • the Pagasetic Gulf, the gulf of Volos, south of the Thermaic Gulf, formed by the Mount Pelion peninsula
  • the Saronic Gulf, the gulf of Athens, between the Corinth Canal and the Mirtoan Sea
  • the Thermaic Gulf, the gulf of Thessaloniki, located in the northern Greek region of Macedonia
  • the Kvarner Gulf, Croatia
  • the Gulf of Lion, south of France
  • the Gulf of Valencia, east of Spain
  • the Strait of Messina, between Sicily and Calabrian peninsula
  • the Gulf of Genoa, northwestern Italy
  • the Gulf of Venice, northeastern Italy
  • the Gulf of Trieste, northeastern Italy
  • the Gulf of Taranto, southern Italy
  • the Gulf of Salerno, southwestern Italy
  • the Gulf of Gaeta, southwestern Italy
  • the Gulf of Squillace, southern Italy
  • the Strait of Otranto, between Italy and Albania
  • the Gulf of Haifa, northern Israel
  • the Gulf of Sidra, between Tripolitania (western Libya) and Cyrenaica (eastern Libya)
  • the Strait of Sicily, between Sicily and Tunisia
  • the Corsica Channel, between Corsica and Italy
  • the Strait of Bonifacio, between Sardinia and Corsica
  • the Gulf of İskenderun, between İskenderun and Adana (Turkey)
  • the Gulf of Antalya, between west and east shores of Antalya (Turkey)
  • the Bay of Kotor, in south-western Montenegro and south-eastern Croatia
  • the Malta Channel, between Sicily and Malta
  • the Gozo Channel, between Malta Island and Gozo

Ten largest islands by area

{{Main|List of islands in the Mediterranean}}
CountryIslandArea in km2Population
ItalySicily25,4605,048,995
ItalySardinia23,8211,672,804
CyprusCyprus9,2511,088,503
FranceCorsica8,680299,209
GreeceCrete8,336623,666
GreeceEuboea3,655218.000
SpainMajorca3,640869,067
GreeceLesbos1,63290,643
GreeceRhodes1,400117,007
GreeceChios84251,936

Climate

{{wide image|Koppen World Map (Mediterranean Sea area only).png|769px|Map of climate zones in the areas surrounding the Mediterranean Sea, according to the Köppen climate classification}}

Sea temperature

Mean sea temperature (°C)
JanFebMarAprMayJunJulAugSepOctNovDecYear
Marseille[33]13131314161821222118161416.6
Gibraltar[34]16151616172022222220181718.4
Málaga[35]16151516172022232220181618.3
Athens[36]16151516182124242421191819.3
Barcelona[37]13131314172023252320171517.8
Heraklion[38]16151516192224252422201819.7
Venice[39]11101113182225262320161417.4
Valencia[40]14131415172124262421181518.5
Malta[41]16161516182124262523211819.9
Alexandria[42]18171718202325262625222021.4
Naples[43]15141415182225272522191619.3
Larnaca[44]18171718202426272725221921.7
Limassol[45]18171718202426272725221921.7
Antalya17171718212427282725221921.8
Tel Aviv[46]18171718212426282726232022.1

Oceanography

Being nearly landlocked affects conditions in the Mediterranean Sea: for instance, tides are very limited as a result of the narrow connection with the Atlantic Ocean. The Mediterranean is characterised and immediately recognised by its deep blue colour.

Evaporation greatly exceeds precipitation and river runoff in the Mediterranean, a fact that is central to the water circulation within the basin.[47] Evaporation is especially high in its eastern half, causing the water level to decrease and salinity to increase eastward.[48] The average salinity in the basin is 38 PSU at 5 m depth.[49]

The temperature of the water in the deepest part of the Mediterranean Sea is {{convert|13.2|°C}}.[49]

General circulation

Water circulation in the Mediterranean can be described from the surface waters entering from the Atlantic through the Strait of Gibraltar. These cool and relatively low-salinity waters circulate westwards along the North African coasts. A part of these surface waters does not pass the Strait of Sicily, but deviates towards Corsica before exiting the Mediterranean. The surface waters entering the eastern Mediterranean basin circulate along the Lybian and Israelian coasts. Upon reaching the Levantine Sea, the surface waters having experienced warming and saltening from their initial Atlantic state, are now more dense and deepen to form the Levantine Intermediate Waters (LIW). Most of the water found anywhere between 50 and 600 m deep in the Mediterranean originates from the LIW.[50] LIW are formed along the coasts of Turkey and circulate eastwards along the Greek and South Italian coasts. LIW are the only waters passing the Sicily Strait eastwards. After the Strait of Sicily, the intermediate waters circulate along the Italian, French and Spanish coasts before exiting the Mediterranean through the depths of the Strait of Gibraltar. Deep water in the Mediterranean originates from three main areas: the Adriatic Sea, from which most of the deep water in the eastern Mediterranean originates, the Aegean Sea, and the Gulf of Lion. Deep water formation in the Mediterranean is triggered by strong winter convection fueled by intense cold winds like the Bora. When new deep water is formed, the older waters mix with the overlaying intermediate waters and eventually exit the Mediterranean. The residence time of water in the Mediterranean is approximately 100 years, making the Mediterranean especially sensitive to climate change.[51]

Other events affecting water circulation

Being a semi-enclosed basin, the Mediterranean experiences transitory events that can affect the water circulation on short time scales. In the Mid 1990s, the Aegean Sea became the main area for deep water formation in the eastern Mediterranean after particularly cold winter conditions. This transitory switch in the origin of deep waters in the eastern Mediterranean was termed Eastern Mediterranean Transient (EMT) and had major consequences on water circulation of the Mediterranean.[52][53][54]

Another example of a transient event affecting the Mediterranean circulation is the periodic inversion of the North Ionian Gyre, which is an anticyclonic ocean gyre observed in the northen part of the Ionian Sea, off the Greek coast. The transition from anticylonic to cyclonic rotation of this gyre changes the origin of the waters fueling it; when the circulation is anticyclonic (most common), the waters of the gyre originate from the Adriatic Sea. When the circulation is cyclonic, the waters originate from the Levantine Sea. These waters have different physical and chemical characteristics, and the periodic inversion of the North Ionian Gyre (called Bimodal Oscillating System or BiOS) changes the Mediterranean circulation and biogeochemistry around the Adriatic and Levantine regions. [55]

Climate change

Because of the short residence time of waters, the Mediterranean Sea is considered a hot-spot for climate change effects. [56] Deep water temperatures have increased by 0.12°C between 1959 and 1989. [57] According to climate projections, the Mediterranean Sea could become warmer. The decrease in precipitation over the region could lead to more evaporation ultimately increasing the Mediterranean Sea salinity. [58] [59] Because of the changes in temperature and salinity, the Mediterranean Sea may become more stratified by the end of the 21st century, with notable consequences on water circulation and biogeochemistry.

Biogeochemistry

In spite of its great biodiversity, concentrations of chlorophyll and nutrients in the Mediterranean Sea are very low, making it one of the most oligotrophic ocean regions in the world. The Mediterranean Sea is commonly referred to as an LNLC (Low-Nutrient, Low-Chlorophyll) area. The Mediterranean Sea fits the definition of a desert as it experiences little precipitation and its nutrient contents are low, making it difficult for plants and animals to develop.

There are intense gradients in nutrient concentrations, chlorophyll concentrations and primary productivity in the Mediterranean. Nutrient concentrations in the western part of the basin are approximately two times higher than the concentrations in the eastern basin. The Alboran Sea, close to the Strait of Gibraltar, has a daily primary productivity of about 0.25 gC m-2 day-1 whereas the eastern basin has an average daily productivity of 0.16 gC m-2 day-1.[60] For this reason, the eastern part of the Mediterranean Sea is termed "ultraoligotrophic". The productive areas of the Mediterranean Sea are few and have a small spatial extent. High (i.e. more than 0.5 grams of chlorophyll a per cubic meter) productivity occurs in coastal areas, close to the river mouths which are primary suppliers of dissolved nutrients. The Gulf of Lion has a relatively high productivity because it is an area of high vertical mixing, bringing nutrients to the surface waters that can be used by phytoplankton to produce chlorophyll a.[61]

Primary productivity in the Mediterranean is also marked by an intense seasonal variability. In Winter, the strong winds and precipitation over the basin generate vertical mixing, bringing nutrients from the deep waters to the surface, where phytoplankton can convert it into biomass.[62] However, in winter, light may be the limiting factor for primary productivity. Between March and April, spring offers the ideal trade-off between light intensity and nutrient concentrations in surface for a spring bloom to occur. In summer, high atmospheric temperatures lead to the warming of the surface Mediterranean waters. The resulting density difference virtually isolates the surface Mediterranean waters from the rest of the water column and nutrient exchanges are limited. As a consequence, primary productivity is very low between June and October.[63][64]

Oceanographic expeditions uncovered a characteristic feature of the Mediterranean Sea biogeochemistry: most of the chlorophyll production does not occur in surface, but in sub-surface waters between 80 and 200 meters deep.[65] Another key characteristic of the Mediterranean is its high nitrogen-to-phosphorus ratio (N:P). Redfield demonstrated that most of the world's oceans have an average N:P ratio around 16. However, the Mediterranean Sea has an average N:P between 24 and 29, which translates a widespread phosphorus limitation.[66][67][68][69]

Because of its low productivity, plankton assemblages in the Mediterranean Sea are dominated by small organisms such as picophytoplankton and bacteria.[70][71]

Geology

{{see also|Geology and paleoclimatology of the Mediterranean Basin}}

The geologic history of the Mediterranean Sea is complex. Underlain by oceanic crust, the sea basin was once thought to be a tectonic remnant of the ancient Tethys Ocean; it is now known to be a structurally younger basin, called the Neotethys, which was first formed by the convergence of the African and Eurasian plates during the Late Triassic and Early Jurassic. Because it is a near-landlocked body of water in a normally dry climate, the Mediterranean is subject to intensive evaporation and the precipitation of evaporites. The Messinian salinity crisis started about six million years ago (mya) when the Mediterranean became landlocked, and then essentially dried up. There are salt deposits accumulated on the bottom of the basin of more than a million cubic kilometres—in some places more than three kilometres thick.[72][73]

Scientists estimate that the sea was last filled about 5.3 million years ago (mya) in less than two years by the Zanclean flood. Water poured in from the Atlantic Ocean through a newly breached gateway now called the Strait of Gibraltar at an estimated rate of about three orders of magnitude (one thousand times) larger than the current flow of the Amazon River.[74]

The Mediterranean Sea has an average depth of {{convert|1500|m|ft|abbr=on}} and the deepest recorded point is {{convert|5267|m|ft|abbr=on}} in the Calypso Deep in the Ionian Sea. The coastline extends for {{convert|46000|km|mi|abbr=on}}. A shallow submarine ridge (the Strait of Sicily) between the island of Sicily and the coast of Tunisia divides the sea in two main subregions: the Western Mediterranean, with an area of about 850 thousand km2 (330 thousand mi2); and the Eastern Mediterranean, of about 1.65 million km2 (640 thousand mi2). A characteristic of the coastal Mediterranean are submarine karst springs or {{lang|hr|vrulja}}s, which discharge pressurised groundwater into the coastal seawater from below the surface; the discharge water is usually fresh, and sometimes may be thermal.[75][76]

Tectonics and paleoenvironmental analysis

{{unreferenced section|date=October 2018}}

The Mediterranean basin and sea system was established by the ancient African-Arabian continent colliding with the Eurasian continent. As Africa-Arabia drifted northward, it closed over the ancient Tethys Ocean which had earlier separated the two supercontinents Laurasia and Gondwana.

At about that time in the middle Jurassic period (roughly 170 million years ago {{dubious|date=November 2018}}) a much smaller sea basin, dubbed the Neotethys, was formed shortly before the Tethys Ocean closed at its western (Arabian) end. The broad line of collisions pushed up a very long system of mountains from the Pyrenees in Spain to the Zagros Mountains in Iran in an episode of mountain-building tectonics known as the Alpine orogeny. The Neotethys grew larger during the episodes of collisions (and associated foldings and subductions) that occurred during the Oligocene and Miocene epochs (34 to 5.33 mya); see animation: Africa-Arabia colliding with Eurasia. Accordingly, the Mediterranean basin consists of several stretched tectonic plates in subduction which are the foundation of the Eastern part of the Mediterranean Sea. Various zones of subduction harbour and form the deepest and most majestic oceanic ridges, east of the Ionian Sea and south of the Aegean. The Central Indian Ridge runs East of the Mediterranean Sea South-East across the in-between of Africa and the Arabian Peninsula into the Indian Ocean.

Messinian salinity crisis

During Mesozoic and Cenozoic times, as the northwest corner of Africa converged on Iberia, it lifted the Betic-Rif mountain belts across southern Iberia and northwest Africa. There the development of the intramontane Betic and Rif basins led to creating two roughly-parallel marine gateways between the Atlantic Ocean and the Mediterranean Sea. Dubbed the Betic and Rifian corridors, they progressively closed during middle and late Miocene times; perhaps several times.[77] During late Miocene times the closure of the Betic Corridor triggered the so-called "Messinian salinity crisis" (MSC), when the Mediterranean almost entirely dried out. The time of beginning of the MSC was recently estimated astronomically at 5.96 mya, and it persisted for some 630,000 years until about 5.3 mya;[78] see Animation: Messinian salinity crisis, at right.

After the initial drawdown and re-flooding there followed more episodes—the total number is debated—of sea drawdowns and re-floodings for the duration of the MSC. It ended when the Atlantic Ocean last re-flooded the basin—creating the Strait of Gibraltar and causing the Zanclean flood—at the end of the Miocene (5.33 mya). Some research has suggested that a desiccation-flooding-desiccation cycle may have repeated several times, which could explain several events of large amounts of salt deposition.[79][80] Recent studies, however, show that repeated desiccation and re-flooding is unlikely from a geodynamic point of view.[81][82]

Desiccation and exchanges of flora and fauna

The present-day Atlantic gateway, i.e. the Strait of Gibraltar, originated in the early Pliocene via the Zanclean Flood. As mentioned, two other gateways preceded Gibraltar: the Betic Corridor across southern Spain and the Rifian Corridor across northern Morocco. The former gateway closed about six (6) mya, causing the Messinian salinity crisis (MSC); the latter or possibly both gateways closed during the earlier Tortonian times, causing a "Tortonian salinity crisis" (from 11.6 to 7.2 mya), which occurred well before the MSC and lasted much longer. Both "crises" resulted in broad connections of the mainlands of Africa and Europe, which thereby normalised migrations of flora and fauna—especially large mammals including primates—between the two continents. The Vallesian crisis indicates a typical extinction and replacement of mammal species in Europe during Tortonian times following climatic upheaval and overland migrations of new species;[83] see Animation: Messinian salinity crisis (and mammal migrations), at right.

The near-completely enclosed configuration of the Mediterranean basin has enabled the oceanic gateways to dominate seawater circulation and the environmental evolution of the sea and basin. Circulation patterns are also affected by several other factors—including climate, bathymetry, and water chemistry and temperature—which are interactive and can induce precipitation of evaporites. Deposits of evaporites accumulated earlier in the nearby Carpathian foredeep during the Middle Miocene, and the adjacent Red Sea Basin (during the Late Miocene), and in the whole Mediterranean basin (during the MSC and the Messinian age). Diatomites are regularly found underneath the evaporite deposits, suggesting a connection between their geneses.

Today, evaporation of surface seawater (output) is more than the supply (input) of fresh water by precipitation and coastal drainage systems, causing the salinity of the Mediterranean to be much higher than that of the Atlantic—so much so that the saltier Mediterranean waters sink below the waters incoming from the Atlantic, causing a two-layer flow across the Gibraltar strait: that is, an outflow submarine current of warm saline Mediterranean water, counterbalanced by an inflow surface current of less saline cold oceanic water from the Atlantic. Herman Sörgel's Atlantropa project proposal in the 1920s proposed a hydroelectric dam to be built across the Strait of Gibraltar, using the inflow current to provide a large amount of hydroelectric energy. The underlying energy grid was as well intended to support a political union between Europe and, at least, the Marghreb part of Africa (compare Eurafrika for the later impact and Desertec for a later project with some parallels in the planned grid).[84]

Shift to a "Mediterranean climate"

The end of the Miocene also marked a change in the climate of the Mediterranean basin. Fossil evidence from that period reveals that the larger basin had a humid subtropical climate with rainfall in the summer supporting laurel forests. The shift to a "Mediterranean climate" occurred largely within the last three million years (the late Pliocene epoch) as summer rainfall decreased. The subtropical laurel forests retreated; and even as they persisted on the islands of Macaronesia off the Atlantic coast of Iberia and North Africa, the present Mediterranean vegetation evolved, dominated by coniferous trees and sclerophyllous trees and shrubs with small, hard, waxy leaves that prevent moisture loss in the dry summers. Much of these forests and shrublands have been altered beyond recognition by thousands of years of human habitation. There are now very few relatively intact natural areas in what was once a heavily wooded region.

Paleoclimate

Because of its latitudinal position and its land-locked configuration, the Mediterranean is especially sensitive to astronomically induced climatic variations, which are well documented in its sedimentary record. Since the Mediterranean is involved in the deposition of eolian dust from the Sahara during dry periods, whereas riverine detrital input prevails during wet ones, the Mediterranean marine sapropel-bearing sequences provide high-resolution climatic information. These data have been employed in reconstructing astronomically calibrated time scales for the last 9 Ma of the Earth's history, helping to constrain the time of past geomagnetic reversals.[85] Furthermore, the exceptional accuracy of these paleoclimatic records has improved our knowledge of the Earth's orbital variations in the past.

Biodiversity

Unlike the vast multidirectional Ocean currents in open Oceans within their respective Oceanic zones; biodiversity in the Mediterranean Sea is that of a stable one due to the subtle but strong locked nature of currents which affects favorably, even the smallest macroscopic type of Volcanic Life Form. The stable Marine ecosystem of the Mediterranean Sea and sea temperature provides a nourishing environment for life in the deep sea to flourish while assuring a balanced Aquatic ecosystem excluded from any external deep oceanic factors.

As a result of the drying of the sea during the Messinian salinity crisis,[86] the marine biota of the Mediterranean are derived primarily from the Atlantic Ocean. The North Atlantic is considerably colder and more nutrient-rich than the Mediterranean, and the marine life of the Mediterranean has had to adapt to its differing conditions in the five million years since the basin was reflooded.

The Alboran Sea is a transition zone between the two seas, containing a mix of Mediterranean and Atlantic species. The Alboran Sea has the largest population of bottlenose dolphins in the Western Mediterranean, is home to the last population of harbour porpoises in the Mediterranean, and is the most important feeding grounds for loggerhead sea turtles in Europe. The Alboran sea also hosts important commercial fisheries, including sardines and swordfish. The Mediterranean monk seals live in the Aegean Sea in Greece. In 2003, the World Wildlife Fund raised concerns about the widespread drift net fishing endangering populations of dolphins, turtles, and other marine animals such as the ogre cancer.

There was a resident population of killer whale in the Mediterranean until the 1980s, when they went extinct, probably due to longterm PCB exposure. There are still annual sightings of killer whale vagrants. [87]

{{See also|Specially Protected Areas of Mediterranean Importance|List of fish of the Mediterranean Sea|List of fish of the Black Sea}}

Environmental issues

{{disputed|talkpage=Talk:Mediterranean_Sea/Archive_1#Some_controversial_additions_to_the_.22Environmental_history.22_section|what=section|date=February 2017}}

For 4,000 years, human activity has transformed most parts of Mediterranean Europe, and the "humanisation of the landscape" overlapped with the appearance of the present Mediterranean climate.[95] The image of a simplistic, environmental determinist notion of a Mediterranean Paradise on Earth in antiquity, which was destroyed by later civilisations dates back to at least the 18th century and was for centuries fashionable in archaeological and historical circles. Based on a broad variety of methods, e.g. historical documents, analysis of trade relations, floodplain sediments, pollen, tree-ring and further archaeometric analyses and population studies, Alfred Thomas Grove and Oliver Rackham's work on "The Nature of Mediterranean Europe" challenges this common wisdom of a Mediterranean Europe as a "Lost Eden", a formerly fertile and forested region, that had been progressively degraded and desertified by human mismanagement.[95] The belief stems more from the failure of the recent landscape to measure up to the imaginary past of the classics as idealised by artists, poets and scientists of the early modern Enlightenment.[95]

The historical evolution of climate, vegetation and landscape in southern Europe from prehistoric times to the present is much more complex and underwent various changes. For example, some of the deforestation had already taken place before the Roman age. While in the Roman age large enterprises as the Latifundiums took effective care of forests and agriculture, the largest depopulation effects came with the end of the empire. Some{{who|date=September 2014}} assume that the major deforestation took place in modern times—the later usage patterns were also quite different e.g. in southern and northern Italy. Also, the climate has usually been unstable and showing various ancient and modern "Little Ice Ages",[88] and plant cover accommodated to various extremes and became resilient with regard to various patterns of human activity.[95]

Humanisation was therefore not the cause of climate change but followed it.[95] The wide ecological diversity typical of Mediterranean Europe is predominantly based on human behavior, as it is and has been closely related human usage patterns.[95] The diversity range was enhanced by the widespread exchange and interaction of the longstanding and highly diverse local agriculture, intense transport and trade relations, and the interaction with settlements, pasture and other land use. The greatest human-induced changes, however, came after World War II, respectively in line with the '1950s-syndrome'[89] as rural populations throughout the region abandoned traditional subsistence economies. Grove and Rackham suggest that the locals left the traditional agricultural patterns towards taking a role as scenery-setting agents for the then much more important (tourism) travellers. This resulted in more monotonous, large-scale formations.[95] Among further current important threats to Mediterranean landscapes are overdevelopment of coastal areas, abandonment of mountains and, as mentioned, the loss of variety via the reduction of traditional agricultural occupations.[90]

Natural hazards

The region has a variety of geological hazards which have closely interacted with human activity and land use patterns. Among others, in the eastern Mediterranean, the Thera eruption, dated to the 17th or 16th century BC, caused a large tsunami that some experts hypothesise devastated the Minoan civilisation on the nearby island of Crete, further leading some to believe that this may have been the catastrophe that inspired the Atlantis legend.[91] Mount Vesuvius is the only active volcano on the European mainland, while others as Mount Etna and Stromboli are to be found on neighbouring islands. The region around Vesuvius including the Phlegraean Fields Caldera west of Naples are quite active[92] and constitute the most densely populated volcanic region in the world where an eruptive event may occur within decades.[93]

Vesuvius itself is regarded as quite dangerous due to a tendency towards explosive (Plinian) eruptions.[94]

It is best known for its eruption in AD 79 that led to the burying and destruction of the Roman cities of Pompeii and Herculaneum.

The large experience of member states and regional authorities has led to exchange on the international level with cooperation of NGOs, states, regional and municipality authorities and private persons.[95] The Greek–Turkish earthquake diplomacy is a quite positive example of natural hazards leading to improved relations of traditional rivals in the region after earthquakes in İzmir and Athens 1999. The European Union Solidarity Fund (EUSF) was set up to respond to major natural disasters and express European solidarity to disaster-stricken regions within all of Europe.[96] The largest amount of fund requests in the EU is being directed to forest fires, followed by floodings and earthquakes. Forest fires are, whether man made or natural, an often recurring and dangerous hazard in the Mediterranean region.[95] Also, tsunamis are an often underestimated hazard in the region. For example, the 1908 Messina earthquake and tsunami took more than 123,000 lives in Sicily and Calabria and is among the most deadly natural disasters in modern Europe.

Invasive species

The opening of the Suez Canal in 1869 created the first salt-water passage between the Mediterranean and Red Sea. The Red Sea is higher than the Eastern Mediterranean, so the canal serves as a tidal strait that pours Red Sea water into the Mediterranean. The Bitter Lakes, which are hyper-saline natural lakes that form part of the canal, blocked the migration of Red Sea species into the Mediterranean for many decades, but as the salinity of the lakes gradually equalised with that of the Red Sea, the barrier to migration was removed, and plants and animals from the Red Sea have begun to colonise the Eastern Mediterranean. The Red Sea is generally saltier and more nutrient-poor than the Atlantic, so the Red Sea species have advantages over Atlantic species in the salty and nutrient-poor Eastern Mediterranean. Accordingly, Red Sea species invade the Mediterranean biota, and not vice versa; this phenomenon is known as the Lessepsian migration (after Ferdinand de Lesseps, the French engineer) or Erythrean invasion. The construction of the Aswan High Dam across the Nile River in the 1960s reduced the inflow of freshwater and nutrient-rich silt from the Nile into the Eastern Mediterranean, making conditions there even more like the Red Sea and worsening the impact of the invasive species.

Invasive species have become a major component of the Mediterranean ecosystem and have serious impacts on the Mediterranean ecology, endangering many local and endemic Mediterranean species. A first look at some groups of exotic species show that more than 70% of the non-indigenous decapods and about 63% of the exotic fishes occurring in the Mediterranean are of Indo Pacific origin,[97] introduced into the Mediterranean through the Suez Canal. This makes the Canal as the first pathway of arrival of "alien" species into the Mediterranean. The impacts of some lessepsian species have proven to be considerable mainly in the Levantine basin of the Mediterranean, where they are replacing native species and becoming a "familiar sight".

According to the International Union for Conservation of Nature definition, as well as Convention on Biological Diversity (CBD) and Ramsar Convention terminologies, they are alien species, as they are non-native (non-indigenous) to the Mediterranean Sea, and they are outside their normal area of distribution which is the Indo-Pacific region. When these species succeed in establishing populations in the Mediterranean Sea, compete with and begin to replace native species they are "Alien Invasive Species", as they are an agent of change and a threat to the native biodiversity. In the context of CBD, "introduction" refers to the movement by human agency, indirect or direct, of an alien species outside of its natural range (past or present). The Suez Canal, being an artificial (man made) canal, is a human agency. Lessepsian migrants are therefore "introduced" species (indirect, and unintentional). Whatever wording is chosen, they represent a threat to the native Mediterranean biodiversity, because they are non-indigenous to this sea. In recent years, the Egyptian government's announcement of its intentions to deepen and widen the canal have raised concerns from marine biologists, fearing that such an act will only worsen the invasion of Red Sea species into the Mediterranean, facilitating the crossing of the canal for yet additional species.[98]

Arrival of new tropical Atlantic species

In recent decades, the arrival of exotic species from the tropical Atlantic has become a noticeable feature. Whether this reflects an expansion of the natural area of these species that now enter the Mediterranean through the Gibraltar strait, because of a warming trend of the water caused by global warming; or an extension of the maritime traffic; or is simply the result of a more intense scientific investigation, is still an open question. While not as intense as the "lessepsian" movement, the process may be scientific interest and may therefore warrant increased levels of monitoring.{{citation needed|date=December 2011}}

Sea-level rise

By 2100 the overall level of the Mediterranean could rise between {{convert|3|to|61|cm|1|abbr=on}} as a result of the effects of climate change.[99] This could have adverse effects on populations across the Mediterranean:

  • Rising sea levels will submerge parts of Malta. Rising sea levels will also mean rising salt water levels in Malta's groundwater supply and reduce the availability of drinking water.[100]
  • A {{convert|30|cm|0|abbr=on}} rise in sea level would flood {{convert|200|km2|0|abbr=out}} of the Nile Delta, displacing over 500,000 Egyptians.[101]

Coastal ecosystems also appear to be threatened by sea level rise, especially enclosed seas such as the Baltic, the Mediterranean and the Black Sea. These seas have only small and primarily east-west movement corridors, which may restrict northward displacement of organisms in these areas.[102] Sea level rise for the next century (2100) could be between {{convert|30|cm|in|abbr=on}} and {{convert|100|cm|in|abbr=on}} and temperature shifts of a mere 0.05–0.1 °C in the deep sea are sufficient to induce significant changes in species richness and functional diversity.[103]

Pollution

Pollution in this region has been extremely high in recent years.{{When|date=May 2012}} The United Nations Environment Programme has estimated that {{convert|650000000|t|ST|abbr=on}} of sewage, {{convert|129000|t|ST|abbr=on}} of mineral oil, {{convert|60000|t|ST|abbr=on}} of mercury, {{convert|3800|t|ST|abbr=on}} of lead and {{convert|36000|t|ST|abbr=on}} of phosphates are dumped into the Mediterranean each year.[104] The Barcelona Convention aims to 'reduce pollution in the Mediterranean Sea and protect and improve the marine environment in the area, thereby contributing to its sustainable development.'[105]

Many marine species have been almost wiped out because of the sea's pollution. One of them is the Mediterranean monk seal which is considered to be among the world's most endangered marine mammals.[106]

The Mediterranean is also plagued by marine debris. A 1994 study of the seabed using trawl nets around the coasts of Spain, France and Italy reported a particularly high mean concentration of debris; an average of 1,935 items per km2. Plastic debris accounted for 76%, of which 94% was plastic bags.[107]

Shipping

Some of the world's busiest shipping routes are in the Mediterranean Sea. It is estimated that approximately 220,000 merchant vessels of more than 100 tonnes cross the Mediterranean Sea each year—about one third of the world's total merchant shipping. These ships often carry hazardous cargo, which if lost would result in severe damage to the marine environment.

The discharge of chemical tank washings and oily wastes also represent a significant source of marine pollution. The Mediterranean Sea constitutes 0.7% of the global water surface and yet receives 17% of global marine oil pollution. It is estimated that every year between {{convert|100000|t|LT|abbr=on}} and {{convert|150000|t|LT|abbr=on}} of crude oil are deliberately released into the sea from shipping activities.

Approximately {{convert|370000000|t|LT|abbr=on}} of oil are transported annually in the Mediterranean Sea (more than 20% of the world total), with around 250–300 oil tankers crossing the sea every day. Accidental oil spills happen frequently with an average of 10 spills per year. A major oil spill could occur at any time in any part of the Mediterranean.[103]

Tourism

The Mediterranean Sea is arguably among the most culturally diverse block basin sea regions in the world, with a unique combination of pleasant climate, beautiful coastline, rich history and various cultures. The Mediterranean region is the most popular tourist destination in the world—attracting approximately one third of the world's international tourists.{{Citation needed|date=February 2017}}

Tourism is one of the most important sources of income for many Mediterranean countries regardless of the man-made geopolitical conflicts that harbour coastal nations. In that regard, authorities around the Mediterranean have made it a point to extinguish rising man-made chaotic zones that would affect the economies, societies in neighboring coastal countries, let alone shipping routes. Naval and rescue components in the Mediterranean Sea are considered one of the very best due to the quick intercooperation of various Naval Fleets within proximity of each other. Unlike the vast open Oceans, the closed nature of the Mediterranean Sea provides a much more adaptable naval initiative among the coastal countries to provide effective naval and rescue missions, considered the safest and regardless of any man-made or natural disaster.

Tourism also supports small communities in coastal areas and islands by providing alternative sources of income far from urban centers. However, tourism has also played major role in the degradation of the coastal and marine environment. Rapid development has been encouraged by Mediterranean governments to support the large numbers of tourists visiting the region each year. But this has caused serious disturbance to marine habitats such as erosion and pollution in many places along the Mediterranean coasts.

Tourism often concentrates in areas of high natural wealth, causing a serious threat to the habitats of endangered Mediterranean species such as sea turtles and monk seals. Reductions in natural wealth may reduce incentives for tourists to visit.[103]

{{see also|environmental impact of tourism}}

Overfishing

{{main|overfishing}}

Fish stock levels in the Mediterranean Sea are alarmingly low. The European Environment Agency says that more than 65% of all fish stocks in the region are outside safe biological limits and the United Nations Food and Agriculture Organisation, that some of the most important fisheries—such as albacore and bluefin tuna, hake, marlin, swordfish, red mullet and sea bream—are threatened.{{date missing}}

There are clear indications that catch size and quality have declined, often dramatically, and in many areas larger and longer-lived species have disappeared entirely from commercial catches.

Large open water fish like tuna have been a shared fisheries resource for thousands of years but the stocks are now dangerously low. In 1999, Greenpeace published a report revealing that the amount of bluefin tuna in the Mediterranean had decreased by over 80% in the previous 20 years and government scientists warn that without immediate action the stock will collapse.

Gallery

See also

{{div col}}
  • {{annotated link|Babelmed}}, the site of the Mediterranean cultures
  • {{annotated link|Euro-Mediterranean Parliamentary Assembly}}
  • {{annotated link|Familial Mediterranean fever}}
  • {{annotated link|History of the Mediterranean region}}
  • {{annotated link|Holy League (1571)}}
  • {{annotated link|List of islands in the Mediterranean}}
  • {{annotated link|List of Mediterranean countries}}
  • {{annotated link|Mediterranean Basin}}
  • {{annotated link|Mediterranean climate}}
  • {{annotated link|Mediterranean diet}}
  • {{annotated link|Mediterranean forests, woodlands, and scrub}}
  • {{annotated link|Mediterranean Games}}
  • {{annotated link|Mediterranean race}}
  • {{annotated link|Mediterranean sea (oceanography)}}
  • {{annotated link|Piri Reis}} – Early cartographer of the Mediterranean
  • {{annotated link|Seto Inland Sea}} – also known as the Japanese Mediterranean Sea
  • {{annotated link|Suez Canal}}
  • {{annotated link|Tyrrhenian Basin}}
  • {{annotated link|Union for the Mediterranean}}
{{div col end}}

References

1. ^{{cite book|title=Invitation to Oceanography |journal=Paleoceanography |volume=30 |issue=5 |first=Paul R. |last=Pinet |page=220 |publisher=Jones & Barlett Learning |year=2008 |isbn=978-0-7637-5993-3 |url=https://books.google.com/books?id=6TCm8Xy-sLUC&pg=PA220&lpg=PA220}}
2. ^{{Cite web|title = Mediterranean Sea|url = http://www.britannica.com/place/Mediterranean-Sea|website = Encyclopædia Britannica|accessdate = 2015-10-23}}
3. ^{{cite web|url= http://www.ifremer.fr/lobtln/OTHER/ext_abstr_East_Sea_workshop_TLM.pdf |title=Microsoft Word – ext_abstr_East_sea_workshop_TLM.doc|accessdate=23 April 2010}}
4. ^{{cite web|url=http://ec.europa.eu/research/headlines/news/article_09_03_19_en.html|title=Researchers predict Mediterranean Sea level rise – Headlines – Research – European Commission|publisher=Europa|date=19 March 2009|accessdate= 23 April 2010}}
5. ^Geoffrey Rickman, "The creation of Mare Nostrum: 300 BC – 500 AD", in David Abulafia, ed., The Mediterranean in History, {{isbn|1-60606-057-0}}, 2011, p. 133.
6. ^{{cite web|url=http://old.perseus.tufts.edu/cgi-bin/ptext?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3D%2366422|title=entry μεσόγαιος |archive-url=https://web.archive.org/web/20091202133428/http://old.perseus.tufts.edu/cgi-bin/ptext?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3D |archive-date=2 December 2009 |publisher=Liddell & Scott}}
7. ^Oxford English Dictionary, 3rd ed, 2001, s.v.
8. ^"Baḥr al-Rūm" in Encyclopedia of Islam, 2nd ed
9. ^Vaso Seirinidou, "The Mediterranean" in Diana Mishkova, Balázs Trencsényi, European Regions and Boundaries: A Conceptual History, series European Conceptual History 3, {{isbn|1-78533-585-5}}, 2017, p. 80
10. ^Diran Kélékian, Dictionnaire Turc-Français, Constantinople, 1911
11. ^{{cite journal|journal=Hyphen|last=Vella|first=Andrew P.|date=1985|title=Mediterranean Malta|url=http://melitensiawth.com/incoming/Index/Hyphen/Hyphen.%204(1985)5/02.pdf|volume=4|issue=5|pages=469–472|archive-url=https://web.archive.org/web/20170329163002/http://melitensiawth.com/incoming/Index/Hyphen/Hyphen.%204%281985%295/02.pdf|archive-date=29 March 2017|deadurl=yes|df=dmy-all}}
12. ^Özhan Öztürk claims that in Old Turkish ak also means "west" and that Akdeniz hence means "West Sea" and that Karadeniz (Black Sea) means "North Sea". Özhan Öztürk. {{cite book|url=http://www.karalahana.com/makaleler/kitap/pontus-antik-cagdan-gunumuze-karadeniz-etnik-siyasi-tarihi.htm |title=Pontus: Antik Çağ'dan Günümüze Karadeniz'in Etnik ve Siyasi Tarihi Genesis Yayınları |place=Ankara |year=2011 |pages=5–9 |deadurl=yes |archiveurl=https://web.archive.org/web/20120915062836/http://www.karalahana.com/makaleler/kitap/pontus-antik-cagdan-gunumuze-karadeniz-etnik-siyasi-tarihi.htm |archivedate=15 September 2012 |df= }}
13. ^Johann Knoblock. Sprache und Religion, Vol. 1 (Carl Winter Universitätsverlag, 1979), 18; cf. {{cite encyclopedia | article = Black Sea | last = Schmitt | first = Rüdiger | authorlink = | url = http://www.iranicaonline.org/articles/black-sea | editor-last = | editor-first = | editor-link = | encyclopedia = Encyclopaedia Iranica, Vol. IV, Fasc. 3 | pages = 310–313 | location = | year = 1989 | isbn = |ref=harv| title = Black – Encyclopaedia Iranica }}
14. ^{{cite book|author=David Abulafia|title=The Great Sea: A Human History of the Mediterranean|publisher= Oxford University Press|year=2011}}
15. ^Rappoport, S. (Doctor of Philosophy, Basel). History of Egypt (undated, early 20th century), Volume 12, Part B, Chapter V: "The Waterways of Egypt", pp. 248–257 ([https://archive.org/stream/historyofegyptch12masp#page/248/mode/2up online]). London: The Grolier Society.
16. ^{{cite book|last=Couper |first=Alastair |title=The Geography of Sea Transport|url= https://books.google.com/?id=WFVACwAAQBAJ&pg=PA37&dq=The+Geography+of+Sea+Transport#v=onepage&q&f=falsepublisher=Routledge|year=2015|isbn=978-1-317-35150-4|pages=33–37}}
17. ^{{cite book|last=Balard|first=Michel|editor-first1=Marcus Graham|editor-last1=Bull |editor-last2=Edbury|editor-first2=Peter|editor-last3=Phillips|editor-first3=Jonathan|title=The Experience of Crusading, Volume 2 – Defining the Crusader Kingdom|publisher=Cambridge University Press |year=2003|isbn=978-0-521-78151-0|url=https://books.google.com/?id=JEN-0A3icQUC&pg=PA233&dq=amalfi+cairo#v=onepage&q&f=false|pages=23–35}}
18. ^{{cite book|last=Housley|first=Norman|authorlink=Norman Housley|title=Contesting the Crusades|publisher=Blackwell Publishing|year=2006|isbn=978-1-4051-1189-8|pp=152–54}}
19. ^{{cite book|first=James|last=Brundage|title=Medieval Italy: An Encyclopedia|publisher=Routledge|year=2004|isbn=978-1-135-94880-1|url=https://books.google.com/?id=E2CTAgAAQBAJ&pg=PT303&dq=through+all+these+military+triumphs+and+reverses,+italian+merchants+constituted+the+mainstay#v=onepage&q&f=false|p=273}}
20. ^{{cite book|url= https://books.google.com/?id=5q9zcB3JS40C&pg&dq#v=onepage&q=&f=false |title= Christian Slaves, Muslim Masters: White Slavery in the Mediterranean, the Barbary Coast and Italy, 1500–1800 |author= Robert Davis |publisher= Palgrave Macmillan |date= 5 December 2003|accessdate= 17 January 2013|isbn= 978-0-333-71966-4}}
21. ^{{cite web|url= http://www.bbc.co.uk/history/british/empire_seapower/white_slaves_01.shtml |title= British Slaves on the Barbary Coast |publisher= Bbc.co.uk |date= |accessdate= 17 January 2013}}
22. ^C.I. Gable – Constantinople Falls to the Ottoman Turks - Boglewood Timeline – 1998 – Retrieved 3 September 2011.
23. ^"History of the Ottoman Empire, an Islamic Nation where Jews Lived"Sephardic Studies and Culture – Retrieved 3 September 2011.
24. ^Robert Guisepi – The Ottomans: From Frontier Warriors To Empire Builders – 1992 – History World International – Retrieved 3 September 2011.
25. ^{{cite web|title=Migrant deaths prompt calls for EU action|url=http://www.aljazeera.com/news/europe/2013/10/migrant-deaths-prompt-calls-eu-action-2013101361646517233.html|website=Al Jazeera – English|accessdate=12 December 2014|date=13 October 2013}}
26. ^{{cite web|title=Schulz: EU migrant policy 'turned Mediterranean into graveyard'|url=http://euobserver.com/tickers/121894|website=EUobserver|accessdate=12 December 2014|date=24 October 2013}}
27. ^{{cite web|url=http://topnews.az/en/news/148766/Novruz-Mammadov-The-Mediterranean-become-a-burial-ground.html|title=Novruz Mammadov: The Mediterranean become a burial ground}}
28. ^{{cite web|title=Over one million sea arrivals reach Europe in 2015 |url=http://www.unhcr.org/news/latest/2015/12/5683d0b56/million-sea-arrivals-reach-europe-2015.html |website=UNHCR – The UN Refugee Agency |date=30 December 2015 }}
29. ^{{cite news |title=What will Italy's new government mean for migrants? |url=https://www.thelocal.it/20180521/what-will-italys-new-government-mean-for-migrants |publisher=The Local |date=21 May 2018}}
30. ^{{cite news |title=African migrants fear for future as Italy struggles with surge in arrivals |url=https://www.reuters.com/article/us-italy-migrants-africa/african-migrants-fear-for-future-as-italy-struggles-with-surge-in-arrivals-idUSKBN1A30QD |agency=Reuters |date=18 July 2017}}
31. ^{{cite web|url=http://www.iho.int/iho_pubs/standard/S-23/S-23_Ed3_1953_EN.pdf|title=Limits of Oceans and Seas, 3rd edition|year=1953|publisher=International Hydrographic Organization|accessdate=20 April 2016}}
32. ^Israel, By Sue Bryant, (New Holland Publishers, 2008), p. 72
33. ^{{cite web|url=http://www.weather2travel.com/climate-guides/france/marseille.php|title=Marseille Climate: Monthly Weather Averages – France|last=Weather2Travel.com}}
34. ^{{cite web|url=http://www.weather2travel.com/climate-guides/gibraltar/gibraltar.php|title=Gibraltar (Westside) Climate: Monthly Weather Averages – Gibraltar|last=Weather2Travel.com}}
35. ^{{cite web|url=http://www.weather2travel.com/climate-guides/spain/costa-del-sol/malaga.php|title=Malaga Climate: Monthly Weather Averages – Costa del Sol|last=Weather2Travel.com}}
36. ^{{cite web|url=http://www.weather2travel.com/climate-guides/greece/athens.php|title=Athens Climate: Monthly Weather Averages – Greece – Greece|last=Weather2Travel.com}}
37. ^{{cite web|url=http://www.weather2travel.com/climate-guides/spain/barcelona.php|title=Barcelona Climate: Monthly Weather Averages – Spain|last=Weather2Travel.com}}
38. ^{{cite web|url=http://www.weather2travel.com/climate-guides/greece/crete/iraklion.php|title=Iraklion Climate: Monthly Weather Averages – Crete – Crete|last=Weather2Travel.com}}
39. ^{{cite web|url=http://www.weather2travel.com/climate-guides/italy/venetian-riviera/venice.php|title=Venice Climate: Monthly Weather Averages – Venetian Riviera|last=Weather2Travel.com}}
40. ^{{cite web|url=http://www.weather2travel.com/climate-guides/spain/valencia.php|title=Valencia Climate: Monthly Weather Averages – Spain – Spain|last=Weather2Travel.com}}
41. ^{{cite web|url=http://www.weather2travel.com/climate-guides/malta/valletta.php|title=Valletta Climate: Monthly Weather Averages – Malta – Malta|last=Weather2Travel.com}}
42. ^{{cite web|url=http://www.weather2travel.com/climate-guides/egypt/alexandria.php|title=Alexandria Climate: Monthly Weather Averages – Egypt|last=Weather2Travel.com}}
43. ^{{cite web|url=http://www.weather2travel.com/climate-guides/italy/neapolitan-riviera/naples.php|title=Naples Climate: Monthly Weather Averages – Neapolitan Riviera|last=Weather2Travel.com}}
44. ^{{cite web|url=http://www.weather2travel.com/climate-guides/cyprus/larnaca.php|title=Larnaca Climate: Monthly Weather Averages – Cyprus|last=Weather2Travel.com}}
45. ^{{cite web|url=http://www.weather2travel.com/climate-guides/cyprus/limassol.php|title=Limassol Climate: Monthly Weather Averages – Cyprus|last=Weather2Travel.com}}
46. ^{{cite web|url=http://www.weather2travel.com/climate-guides/israel/tel-aviv.php|title=Tel Aviv Climate: Monthly Weather Averages – Israel|last=Weather2Travel.com}}
47. ^{{citation|last=Pinet|first=Paul R.|year=1996|title=Invitation to Oceanography|location=St Paul, Minnesota|publisher =West Publishing Co.|isbn=978-0-314-06339-7|edition=3rd|page=202}}
48. ^Pinet 1996, p. 206.
49. ^{{cite journal | year = 2000 | title = Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios | citeseerx = 10.1.1.378.4964 | journal = Palaeogeography, Palaeoclimatology, Palaeoecology | volume = 158 | issue = 3–4| pages = 259–280 | doi=10.1016/s0031-0182(00)00053-5| last1 = Emeis | first1 = Kay-Christian | last2 = Struck | first2 = Ulrich | last3 = Schulz | first3 = Hans-Martin | last4 = Rosenberg | first4 = Reinhild | last5 = Bernasconi | first5 = Stefano | last6 = Erlenkeuser | first6 = Helmut | last7 = Sakamoto | first7 = Tatsuhiko | last8 = Martinez-Ruiz | first8 = Francisca | bibcode = 2000PPP...158..259E }}
50. ^{{cite book |doi=10.1007/b107143 |chapter=Circulation in the Mediterranean Sea |title=The Mediterranean Sea |volume=5K |pages=29–66 |series=Handbook of Environmental Chemistry |year=2005 |last1=Millot |first1=Claude |last2=Taupier-Letage |first2=Isabelle |isbn=978-3-540-25018-0 }}
51. ^{{cite journal |last1=Millot |first1=C. |year=1989 |title=La Circulation Générale En Méditerranée Occidentale : Aperçu De Nos Connaissances Et Projets D'études |trans-title=General Circulation in the Western Mediterranean: Overview of Our Knowledge and Study Projects |language=French |journal=Annales de Géographie |volume=98 |issue=549 |pages=497–515 |jstor=23452851 |doi=10.3406/geo.1989.20925 }}
52. ^{{cite journal |last1=Gasparini |first1=G.P. |last2=Ortona |first2=A. |last3=Budillon |first3=G. |last4=Astraldi |first4=M. |last5=Sansone |first5=E. |title=The effect of the Eastern Mediterranean Transient on the hydrographic characteristics in the Strait of Sicily and in the Tyrrhenian Sea |journal=Deep Sea Research Part I: Oceanographic Research Papers |date=June 2005 |volume=52 |issue=6 |pages=915–935 |doi=10.1016/j.dsr.2005.01.001 |bibcode=2005DSRI...52..915G }}
53. ^{{cite journal |last1=Lascaratos |first1=Alex |last2=Roether |first2=Wolfgang |last3=Nittis |first3=Kostas |last4=Klein |first4=Birgit |title=Recent changes in deep water formation and spreading in the eastern Mediterranean Sea: a review |journal=Progress in Oceanography |date=August 1999 |volume=44 |issue=1–3 |pages=5–36 |doi=10.1016/S0079-6611(99)00019-1 |bibcode=1999PrOce..44....5L }}
54. ^{{cite journal |last1=Theocharis |first1=Alexander |last2=Nittis |first2=Kostas |last3=Kontoyiannis |first3=Harilaos |last4=Papageorgiou |first4=Emanuel |last5=Balopoulos |first5=Efstathios |title=Climatic changes in the Aegean Sea influence the eastern Mediterranean thermohaline circulation (1986-1997) |journal=Geophysical Research Letters |date=1 June 1999 |volume=26 |issue=11 |pages=1617–1620 |doi=10.1029/1999GL900320 |bibcode=1999GeoRL..26.1617T }}
55. ^Civitarese, G., Gacic, M., Lipizer, M., and Borzelli, G. L. E. (2010). On the impact of the BimodalOscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (EasternMediterranean). Biogeosciences, 7(12) : 3987–3997. WOS :000285574100006.
56. ^Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33(8) :L08707. 15
57. ^Béthoux, J. P., Gentili, B., Raunet, J., and Tailliez, D. (1990). Warming trend in the western Mediterraneandeep water. Nature, 347(6294) : 660–662.
58. ^Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33(8) :L08707. 15
59. ^Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué, M., Herrmann, M., Marcos, M., Dubois,C., Padorno, E., Alvarez-Fanjul, E., and Gomis, D. (2015). Mediterranean Sea response to climatechange in an ensemble of twenty first century scenarios. Climate Dynamics, 45(9-10) : 2775–2802
60. ^Uitz, J., Stramski, D., Gentili, B., D’Ortenzio, F., and Claustre, H. (2012). Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color observations : primary production in the mediterranean. Global Biogeochemical Cycles, 26(2)
61. ^Bosc, E., Bricaud, A., and Antoine, D. (2004). Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations : MEDITERRANEAN SEA BIOMASS AND PRODUCTION. Global Biogeochemical Cycles, 18(1).
62. ^Lebeaupin Brossier, C., Béranger, K., Deltel, C., and Drobinski, P. (2011). The Mediterranean response to different space–time resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Modelling, 36(1–2) : 1–25
63. ^d’Ortenzio, F. and Ribera d’Alcalà, M. (2009). On the trophic regimes of the Mediterranean Sea : a satellite analysis. Biogeosciences, 6(2) : 139–148
64. ^Bosc, E., Bricaud, A., and Antoine, D. (2004). Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations : MEDITERRANEAN SEA BIOMASS AND PRODUCTION. Global Biogeochemical Cycles, 18(1).
65. ^Moutin, T., Van Wambeke, F., and Prieur, L. (2012). Introduction to the Biogeochemistry from the Oligo- trophic to the Ultraoligotrophic Mediterranean (BOUM) experiment. Biogeosciences, 9(10) : 3817–3825.
66. ^Berland, B., Bonin, D., and Maestrini, S. (1980). Azote ou phosphore ? Considérations sur le paradoxe nutritionnel de la mer méditerranée. Oceanologica Acta, 3(1) : 135–141
67. ^Béthoux, J. P., Morin, P., Madec, C., and Gentili, B. (1992). Phosphorus and nitrogen behaviour in the Mediterranean Sea. Deep Sea Research Part A. Oceanographic Research Papers, 39(9) : 1641–1654.
68. ^Kress, N. and Herut, B. (2001). Spatial and seasonal evolution of dissolved oxygen and nutrients in the Southern Levantine Basin (Eastern Mediterranean Sea) : chemical characterization of the water masses and inferences on the N : P ratios. Deep Sea Research Part I : Oceanographic Research Papers, 48(11) : 2347–2372
69. ^Krom, M. D., Thingstad, T. F., Brenner, S., Carbo, P., Drakopoulos, P., Fileman, T. W., Flaten, G. A. F., Groom, S., Herut, B., Kitidis, V., Kress, N., Law, C. S., Liddicoat, M. I., Mantoura, R. F. C., Pasternak, A., Pitta, P., Polychronaki, T., Psarra, S., Rassoulzadegan, F., Skjoldal, E. F., Spyres, G., Tanaka, T., Tselepides, A., Wassmann, P., Wexels Riser, C., Woodward, E. M. S., Zodiatis, G., and Zohary, T. (2005). Summary and overview of the CYCLOPS P addition Lagrangian experiment in the Eastern Mediterranean. Deep Sea Research Part II : Topical Studies in Oceanography, 52(22–23) : 3090–3108.
70. ^Sammartino, M., Di Cicco, A., Marullo, S., and Santoleri, R. (2015). Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS. Ocean Sciences, 11(5) : 759–778
71. ^Uitz, J., Stramski, D., Gentili, B., D’Ortenzio, F., and Claustre, H. (2012). Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color obser- vations : primary production in the mediterranean. Global Biogeochemical Cycles, 26(2)
72. ^{{cite journal |doi=10.1111/j.1365-3091.2008.01031.x |title=Decoding the Mediterranean salinity crisis |journal=Sedimentology |volume=56 |issue=1 |pages=95–136 |year=2009 |last1=Ryan |first1=William B. F. |bibcode=2009Sedim..56...95R }}
73. ^{{cite journal|author1=William Ryan|title=Modeling the magnitude and timing of evaporative drawdown during the Messinian salinity crisis|journal= Stratigraphy|date=2008|volume=5|issue=3–4|page=229|url=http://eesc.ldeo.columbia.edu/courses/w4937/Readings/Ryan_Messinian_Stratigraphy_2008.pdf}}
74. ^{{cite journal |doi=10.1038/nature08555 |pmid=20010684 |title=Catastrophic flood of the Mediterranean after the Messinian salinity crisis |journal=Nature |volume=462 |issue=7274 |pages=778–781 |year=2009 |last1=Garcia-Castellanos |first1=D. |last2=Estrada |first2=F. |last3=Jiménez-Munt |first3=I. |last4=Gorini |first4=C. |last5=Fernàndez |first5=M. |last6=Vergés |first6=J. |last7=De Vicente |first7=R. |bibcode=2009Natur.462..778G }}
75. ^{{cite book |chapter-url=https://books.google.si/books?id=sjEoBmfUka0C&pg=PA58#v=onepage&q&f=false |chapter=Geologic/Hydrogeologic Setting and Classification of Springs |page=57 |title=Springs and Bottled Waters of the World: Ancient History, Source, Occurrence, Quality and Use |first=Philip |last=Elmer LaMoreaux |year=2001 |publisher=Springer |isbn=978-3-540-61841-6}}
76. ^{{cite journal|url=http://zgs.zrc-sazu.si/Portals/8/Geografski_obzornik/go_2004_2.pdf|journal=Geografski Obzornik|year=2004|volume=51|issue=2|issn=0016-7274|language=Slovenian|first=Jože|last=Žumer|title=Odkritje podmorskih termalnih izvirov|trans-title=Discovery of submarine thermal springs|pages=11–17}} {{sl icon}}
77. ^{{cite journal | last1 = de la Vara | first1 = Alba | last2 = Topper | first2 = Robin P.M. | last3 = Meijer | first3 = Paul Th. | last4 = Kouwenhoven | first4 = Tanja J. | year = 2015 | title = Water exchange through the Betic and Rifian corridors prior to the Messinian Salinity Crisis: A model study | journal = Paleoceanography| volume = 30| issue = 5| pages = 548–557| doi = 10.1002/2014PA002719 | bibcode = 2015PalOc..30..548V | hdl = 1874/326590 }}
78. ^{{cite journal | title = Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity | year = 2001 | doi = 10.1016/S0037-0738(00)00171-8 |first1=W. |last1=Krijgsman |first2=A.R. |last2=Fortuinb |first3=F.J. |last3=Hilgenc |first4=F.J. |last4=Sierrod | journal = Sedimentary Geology | volume = 140 | issue = 1 | pages = 43–60 | bibcode=2001SedG..140...43K| hdl = 1874/1632 }}
79. ^{{cite journal|author1=Gargani J., Rigollet C.|title=Mediterranean Sea level variations during the Messinian Salinity Crisis.|journal=Geophysical Research Letters|date=2007|volume=34|issue= L10405|page= L10405|doi=10.1029/2007GL029885|bibcode=2007GeoRL..3410405G}}
80. ^{{cite journal|author1=Gargani J. |author2=Moretti I. |author3=Letouzey J. |title= Evaporite accumulation during the Messinian Salinity Crisis : The Suez Rift Case.|journal=Geophysical Research Letters|date=2008|volume=35|issue= 2|page= L02401|doi=10.1029/2007gl032494|bibcode=2008GeoRL..35.2401G}}
81. ^{{cite journal |last1=Govers |first1=Rob |title=Choking the Mediterranean to dehydration: The Messinian salinity crisis |journal=Geology |date=February 2009 |volume=37 |issue=2 |pages=167–170 |doi=10.1130/G25141A.1 |bibcode=2009Geo....37..167G }}
82. ^{{cite journal |last1=Garcia-Castellanos |first1=D. |last2=Villaseñor |first2=A. |title=Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc |journal=Nature |date=15 December 2011 |volume=480 |issue=7377 |pages=359–363 |doi=10.1038/nature10651 |pmid=22170684 |bibcode=2011Natur.480..359G }}
83. ^{{Cite book | last1 = Agusti | first1 = J | last2 = Moya-Sola | first2 = S | title = Mammal extinctions in the Vallesian (Upper Miocene) | volume = 30 | year = 1990 | pages = 425–432 | issn = 1613-2580 | doi = 10.1007/BFb0011163| series = Lecture Notes in Earth Sciences | isbn = 978-3-540-52605-6 }} (Abstract)
84. ^Politische Geographien Europas: Annäherungen an ein umstrittenes Konstrukt, Anke Strüver, LIT Verlag Münster, 2005, p. 43
85. ^FJ, Hilgen. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale, 104 (1991) 226–244 Earth and Planetary Science Letters, 1991.{{cite web |url=http://igitur-archive.library.uu.nl/geo/2007-0119-200857/hilgen_91_astronomical.pdf |title=Archived copy |accessdate=2009-12-04 |deadurl=yes |archiveurl=https://web.archive.org/web/20110724171928/http://igitur-archive.library.uu.nl/geo/2007-0119-200857/hilgen_91_astronomical.pdf |archivedate=24 July 2011 |df=dmy-all }}
86. ^Hsu K.J., "When the Mediterranean Dried Up" Scientific American, Vol. 227, December 1972, p. 32
87. ^Carrington, Damian. [https://www.theguardian.com/environment/2016/jan/14/uks-last-resident-killer-whales-doomed-to-extinction "UK’s last resident killer whales 'doomed to extinction'"], The Guardian, London, 14 January 2016. Retrieved 17 February 2019.
88. ^Little Ice Ages: Ancient and Modern, Jean M. Grove, Taylor & Francis, 2004
89. ^Christian Pfister (Hrsg.), Das 1950er Syndrom: Der Weg in die Konsumgesellschaft, Bern 1995
90. ^The Nature of Mediterranean Europe: An Ecological History, by Alfred Thomas Grove, Oliver Rackham, Yale University Press, 2003, review at Yale university press [https://muse.jhu.edu/login?auth=0&type=summary&url=/journals/journal_of_interdisciplinary_history/v032/32.3fagan.pdfThe Nature of Mediterranean Europe: An Ecological History (review) Brian M. Fagan, Journal of Interdisciplinary History, Volume 32, Number 3, Winter 2002, pp. 454–455 |]
91. ^The wave that destroyed Atlantis Harvey Lilley, BBC News Online, 2007-04-20. Retrieved 2007-04-21.
92. ^Antonio Denti, [https://www.reuters.com/article/2012/08/03/us-italy-volcano-idUSBRE8720WI20120803 "Super volcano", global danger, lurks near Pompeii], Reuters, 3 August 2012.
93. ^{{cite journal | first = Roberto | last = Isaia |author2=Paola Marianelli |author3=Alessandro Sbrana | year = 2009 | title = Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: Implications for caldera dynamics and future eruptive scenarios | journal = Geophysical Research Letters | volume = 36 | issue = L21303 | url = http://www.agu.org/pubs/crossref/2009/2009GL040513.shtml | doi = 10.1029/2009GL040513 | pages = L21303 |bibcode = 2009GeoRL..3621303I }}
94. ^{{cite news|first=Bill|last=McGuire|title=In the shadow of the volcano|date=16 October 2003|publisher=Guardian News and Media Limited|newspaper=guardian.co.uk|url=https://www.theguardian.com/education/2003/oct/16/research.highereducation2|accessdate=8 May 2010}}
95. ^{{cite web|url=http://www.infopuntveiligheid.nl/Infopuntdocumenten/7._Eric_van_der_Horst.pdf|title=Alle kennisdossiers van het Instituut Fysieke Veiligheid}}
96. ^EU Solidarity Fund Website 2003 proposal of EUR 47.6 million for Italian regions hit by natural disasters
97. ^{{cite web|url=http://www.issg.org/infpaper_invasive.pdf |title=IUCN Guidelines for the Prevention of Biodiversity Loss Caused by Alien Invasive Species |accessdate=11 August 2009 |year=2000 |publisher=International Union for Conservation of Nature |deadurl=yes |archiveurl=https://web.archive.org/web/20090115235640/http://www.issg.org/infpaper_invasive.pdf |archivedate=15 January 2009 }}
98. ^Galil, B.S. and Zenetos, A. (2002). A sea change: exotics in the eastern Mediterranean Sea, in: Leppäkoski, E. et al. (2002). Invasive aquatic species of Europe: distribution, impacts and management. pp. 325–336.
99. ^{{cite news|title=Mediterranean Sea Level Could Rise By Over Two Feet, Global Models Predict|url=https://www.sciencedaily.com/releases/2009/03/090303084057.htm|publisher=Science Daily|date=3 March 2009}}
100. ^{{cite news|title=Briny future for vulnerable Malta|url=http://news.bbc.co.uk/2/hi/science/nature/6525069.stm|date=4 April 2007|publisher=BBC News}}
101. ^{{cite web|title=Egypt fertile Nile Delta falls prey to climate change |url=http://news.egypt.com/en/201001288902/news/-egypt-news/egypt-fertile-nile-delta-falls-prey-to-climate-change.html |date=28 January 2010 |deadurl=yes |archiveurl=https://web.archive.org/web/20110209093815/http://news.egypt.com/en/201001288902/news/-egypt-news/egypt-fertile-nile-delta-falls-prey-to-climate-change.html |archivedate=9 February 2011 |df= }}
102. ^Nicholls, R.J.; Klein, R.J.T. (2005). Climate change and coastal management on Europe's coast, in: Vermaat, J.E. et al. (Ed.) (2005). Managing European coasts: past, present and future. pp. 199–226.
103. ^{{cite web|url= http://www.greenpeace.org/international/campaigns/oceans/marine-reserves/the-mediterranean/mediterranean-other-threats|title=Other threats in the Mediterranean | Greenpeace International|publisher=Greenpeace|accessdate=23 April 2010}}
104. ^{{cite web|url= http://www.explorecrete.com/nature/mediterranean.html|title=Pollution in the Mediterranean Sea. Environmental issues|publisher=Explorecrete.com|accessdate= 23 April 2010}}
105. ^{{cite web|url=http://europa.eu/scadplus/leg/en/lvb/l28084.htm |title=EUROPA |publisher=Europa |accessdate=23 April 2010 |deadurl=yes |archiveurl=https://web.archive.org/web/20090409220807/http://europa.eu/scadplus/leg/en/lvb/l28084.htm |archivedate=9 April 2009 |df= }}
106. ^{{cite web|url= http://www.monachus-guardian.org/factfiles/medit01.htm|title=Mediterranean Monk Seal Fact Files: Overview|publisher=Monachus-guardian.org|date=5 May 1978|accessdate=23 April 2010}}
107. ^{{cite web |url=http://www.unep.org/regionalseas/marinelitter/publications/docs/anl_oview.pdf |title=Marine Litter: An Analytical Overview |accessdate=1 August 2008 |year=2005 |publisher=United Nations Environment Programme}}

External links

  • Mediterranean Sea Microorganisms: 180+ images of Foraminifera
  • Eastern Mediterranean Sea Long Term Ecological Research Station
{{Countries and territories bordering the Mediterranean Sea}}{{List of seas}}{{Marginal seas of the Atlantic Ocean}}{{Regions of the world}}{{subject bar|portal1=Mediterranean|portal2=Mediterranean cuisine|portal3=Geography |voy=y |commons=y |wikt=y |n=y |q=y |s=y|v=y}}{{Authority control}}

9 : European seas|Geography of North Africa|Marginal seas of the Atlantic Ocean|Marine ecoregions|Mediterranean Sea|Natural history of Europe|Articles containing video clips|Seas of Africa|Seas of Asia

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/30 8:24:05