释义 |
- Genomics
- Function
- Clinical significance
- See also
- References
- Further reading
{{Infobox_gene}}Sodium-dependent phosphate transporter 2 is a protein that in humans is encoded by the SLC20A2 gene.[1][2][3]GenomicsThis gene is found on the short arm of chromosome 8 (8p12-p11) on the minus (Crick) strand. It is 123,077 bases in length. The encoded protein has 652 amino acids and the predicted molecular weight of the protein is 70.392 kiloDaltons. Function The protein acts as a homodimer and is involved in phosphate transport by absorbing phosphate from interstitial fluid for normal cellular functions such as cellular metabolism, signal transduction, and nucleic acid and lipid synthesis. Clinical significance Mutations in the SLC20a2 gene are associated with idiopathic basal ganglia calcification (Fahr's syndrome). This association suggests that familial idiopathic basal ganglia calcification is caused by changes in phosphate homeostasis, since this gene encodes for PIT-2, an inorganic phosphate transporter.[4] See alsoReferences1. ^{{cite journal | vauthors = Kozak SL, Siess DC, Kavanaugh MP, Miller AD, Kabat D | title = The envelope glycoprotein of an amphotropic murine retrovirus binds specifically to the cellular receptor/phosphate transporter of susceptible species | journal = J Virol | volume = 69 | issue = 6 | pages = 3433–40 |date=Jun 1995 | pmid = 7745689 | pmc = 189055 | doi = }} 2. ^{{cite journal | vauthors = Bottger P, Hede SE, Grunnet M, Hoyer B, Klaerke DA, Pedersen L | title = Characterization of transport mechanisms and determinants critical for Na+-dependent Pi symport of the PiT family paralogs human PiT1 and PiT2 | journal = Am J Physiol Cell Physiol | volume = 291 | issue = 6 | pages = C1377–87 |date=Nov 2006 | pmid = 16790504 | pmc = | doi = 10.1152/ajpcell.00015.2006 }} 3. ^{{cite web | title = Entrez Gene: SLC20A2 solute carrier family 20 (phosphate transporter), member 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6575| accessdate = }} 4. ^{{cite journal | vauthors = Wang C, Li Y, Shi L, Ren J, Patti M, Wang T, de Oliveira JR, Sobrido MJ, Quintáns B, Baquero M, Cui X, Zhang XY, Wang L, Xu H, Wang J, Yao J, Dai X, Liu J, Zhang L, Ma H, Gao Y, Ma X, Feng S, Liu M, Wang QK, Forster IC, Zhang X, Liu JY | title = Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis | journal = Nat Genet | volume = 44| issue = 3| pages = 254–6|date=February 2012 | pmid = 22327515 | doi = 10.1038/ng.1077 | url = }}
Further reading{{refbegin | 2}}- {{cite journal | vauthors=Garcia JV, Jones C, Miller AD |title=Localization of the amphotropic murine leukemia virus receptor gene to the pericentromeric region of human chromosome 8. |journal=J. Virol. |volume=65 |issue= 11 |pages= 6316–9 |year= 1991 |pmid= 1656098 |doi= | pmc=250343 }}
- {{cite journal |vauthors=van Zeijl M, Johann SV, Closs E, etal |title=A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 3 |pages= 1168–72 |year= 1994 |pmid= 8302848 |doi=10.1073/pnas.91.3.1168 | pmc=521475 }}
- {{cite journal | vauthors=Salaün C, Gyan E, Rodrigues P, Heard JM |title=Pit2 assemblies at the cell surface are modulated by extracellular inorganic phosphate concentration. |journal=J. Virol. |volume=76 |issue= 9 |pages= 4304–11 |year= 2002 |pmid= 11932396 |doi=10.1128/JVI.76.9.4304-4311.2002 | pmc=155110 }}
- {{cite journal | vauthors=Bottger P, Pedersen L |title=Two highly conserved glutamate residues critical for type III sodium-dependent phosphate transport revealed by uncoupling transport function from retroviral receptor function. |journal=J. Biol. Chem. |volume=277 |issue= 45 |pages= 42741–7 |year= 2003 |pmid= 12205090 |doi= 10.1074/jbc.M207096200 }}
- {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
- {{cite journal | vauthors=Bøttger P, Pedersen L |title=The central half of Pit2 is not required for its function as a retroviral receptor. |journal=J. Virol. |volume=78 |issue= 17 |pages= 9564–7 |year= 2004 |pmid= 15308749 |doi= 10.1128/JVI.78.17.9564-9567.2004 | pmc=506934 }}
- {{cite journal | vauthors=Bøttger P, Pedersen L |title=Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. |journal=FEBS J. |volume=272 |issue= 12 |pages= 3060–74 |year= 2005 |pmid= 15955065 |doi= 10.1111/j.1742-4658.2005.04720.x }}
- {{cite journal | vauthors=Ravera S, Virkki LV, Murer H, Forster IC |title=Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. |journal=Am. J. Physiol., Cell Physiol. |volume=293 |issue= 2 |pages= C606–20 |year= 2007 |pmid= 17494632 |doi= 10.1152/ajpcell.00064.2007 }}
{{refend}}{{Membrane transport proteins}}{{membrane-protein-stub}} 1 : Solute carrier family |