请输入您要查询的百科知识:

 

词条 Source Separated Organics
释义

  1. Types of Materials

  2. Programs

  3. Benefits

  4. Barriers to adoption

  5. Processing

  6. See also

  7. Notes

  8. References

  9. External links

Source Separated Organics (SSO) is the system by which waste generators segregate compostable materials from other waste streams at the source for separate collection.

Types of Materials

Organic materials, such as yard trimmings, food scraps, wood waste, and paper and paperboard products, typically make up about one-third (by weight) of the municipal solid waste stream.[1] SSO programs depend on the composition of local waste stream, acceptance specifications for the organics processing facility, and collection methods. The types of organic materials collected include:

  • Yard and landscaping debris: floral trimmings, tree trimmings, leaves, grass, brush, and weeds
  • Food waste: organic residues generated by the handling, storage, sale, preparation, cooking, and serving of foods, including fruits, vegetables, meat, poultry, seafood, shellfish, bones, rice, beans, pasta, bakery items, cheese, eggshells, and coffee grounds
  • Paper fibers: waxed cardboard, napkins, paper towels, uncoated paper plates, tea bags, coffee filters, wooden crates, and greasy pizza boxes
  • Wood waste: urban wood waste, woody debris from suburban land clearing, and rural forestry residuals

Programs

SSO programs have been launched in a wide range of venues, including single-family residential units, commercial businesses, events, food processors, schools, hospitals, and airports. The U.S. Environmental Protection Agency (EPA) has assembled tools and resources for food waste management to assist communities interested in launching their own food waste reduction and collection efforts.[2] SSO materials are typically collected in wet-strength paper bags, unlined plastic bins, or compostable film-plastic liners that meet ASTM 6400 standards.

Benefits

The organic fraction of the waste stream is increasingly viewed as a resource. The resulting products – renewable energy and compost – benefit the environment: reduce greenhouse gas emissions; reduce dependency on foreign energy imports; increase the nutrient composition of our soils; reduce the amount of waste going to landfills; reduce the amount of wet, sloppy waste going to other methods of disposal; reduce the leachate associated with stormwater management at landfills; reduce the greenhouse gas emissions from uncontrolled landfill operations; improve erosion and stormwater control through biofiltration (Schwab, 2000).

Barriers to adoption

Communities and businesses that want to implement SSO programs face a few challenges. First, they need participation at the source of their organic waste generation. Second, they need a hauler willing to collect the organic waste. Third, they need a composting facility permitted to process the material. These challenges have been overcome by many successful SSO programs. Tactics for addressing barriers to adoption include creating outreach and education materials,[3][4][5] forging partnerships between local businesses to share fixed collection costs,[6] and creating incentives for organic diversion through regulated tip fees for solid waste and organics.

Processing

Organic materials collected in SSO programs typically get delivered to composting facilities where the waste is turned into nutrient-rich soil amendments known as compost. Organic feedstock can also be delivered to anaerobic digestion facilities that produce biogas, a source of renewable energy.

Anaerobic digestion of the organic fraction of MSW Municipal Solid Waste has been found to be in a number of LCA analysis studies[7][8] to be more environmentally effective, than landfill, incineration or pyrolysis. The resulting biogas (methane) can then be used for cogeneration (electricity and heat preferably on or close to the site of production) and can be used in gas combustion engines or turbines. With further upgrading to synthetic natural gas it can be injected into the natural gas network or further refined to hydrogen for use in stationary cogeneration fuel cells.

See also

  • Anaerobic digestion
  • Biodegradable waste
  • Biogas
  • Bioplastics
  • Food waste
  • Materials Recovery Facility
  • Municipal Solid Waste
  • Recycling
  • Waste management

Notes

1. ^http://www.epa.gov/epawaste/nonhaz/municipal/pubs/msw2008rpt.pdf
2. ^{{Cite report |author= |authorlink= |coauthors= |date=May 1994 |title=Composting Yard Trimmings and Municipal Solid Waste |url=http://www.epa.gov/epawaste/conserve/rrr/composting/pubs/cytmsw.pdf |publisher= |page= |docket=EPA530-R-94-003 |accessdate= |quote= }}
3. ^http://www.stopwaste.org/docs/foodscrap_pitch_2_01.pdf
4. ^http://www.cetonline.org/Publications/res-schools-online.pdf
5. ^http://www.ct.gov/dep/lib/dep/compost/compost_pdf/schmanual.pdf
6. ^http://www.jgpress.com/archives/_free/000496.html
7. ^http://www.idosi.org/gjer/gjer3(3)09/4.pdf
8. ^http://www.eurojournals.com/ejsr_34_3_11.pdf

References

  • Al-Salem, S. M. & Lettieri, P. (2009).Life Cycle Assessment (LCA) of Municipal Solid Waste Management in the State of Kuwait European Journal of Scientific Research 34(3), 395-405.
  • Connecticut Department of Environmental Protection. (2002). School Composting: A Manual for CT Schools.
  • Cuneen, G. (2010, March). Launching Zero Waste Schools "BioCycle", Vol. 51, No. 3, p. 35.
  • Massachusetts Department of Environmental Protection. (2003, May). Composting in Restaurants and Schools: A Municipal Toolkit. Center for Ecological Technology (CET).
  • Rosenbloom, P. & Bunn, S. (2005, August). Airport Economizes on Food Residuals Collection Costs BioCycle", Vol. 46, No. 8, p. 24.
  • Schwab, J. (2000). Compost: Better, Faster, Cheaper Cleanups Waste Age.
  • United States Environmental Protection Agency. (2004). Composting Yard Trimmings and Municipal Solid Waste Office of Solid Waste and Emergency Response: Washington, DC.
  • United States Environmental Protection Agency. (2008) Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2008 Washington, DC.
  • Zaman, Atiqu Uz. (2009). Life Cycle Environmental Assessment of Municipal Solid Waste to Energy Technologies. Global Journal of Environmental Research 3, (3):155-163.

External links

  • Portland Composts! - Business organics recycling in Portland, OR
  • Save Our Scraps - Public school organic recycling program in Clark County, WA
  • Food Scrap Recycling Ads by StopWaste.org, CA
  • Recycle Food. It's Easy to Do. by King County, WA
  • City of Dubuque Food Scrap Recycling Program by Dubuque, IA
  • Bin Talk by Ottawa, Canada
  • How to Set up a Recycling Program by the U.S. Environmental Protection Agency
  • Find a Composter by BioCyle
  • Food Service/Cafeteria Waste Reduction by CalRecycle, CA

2 : Biodegradable waste management|Food waste

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/21 3:18:14