请输入您要查询的百科知识:

 

词条 Metallic hydrogen
释义

  1. Theoretical predictions

     Metallization of hydrogen under pressure  Liquid metallic hydrogen  Superconductivity  Possibility of novel types of quantum fluid  Lithium alloying reduces requisite pressure 

  2. Experimental pursuit

     Shock-wave compression, 1996  Other experimental research, 1996–2004  Pulsed laser heating experiment, 2008  Observation of liquid metallic hydrogen, 2011  Z machine, 2015  Claimed observation of solid metallic hydrogen, 2016  Experiments on fluid deuterium at the National Ignition Facility, 2018 

  3. See also

  4. References

Metallic hydrogen is a phase of hydrogen in which it behaves like an electrical conductor. This phase was predicted in 1935 on theoretical grounds by Eugene Wigner and Hillard Bell Huntington.[2]

At high pressure and temperatures, metallic hydrogen can exist as a liquid rather than a solid, and researchers think it might be present in large quantities in the hot and gravitationally compressed interiors of Jupiter, Saturn, and in some exoplanets.[3]

Theoretical predictions

Metallization of hydrogen under pressure

Though often placed at the top of the alkali metal column in the periodic table, hydrogen does not, under ordinary conditions, exhibit the properties of an alkali metal. Instead, it forms diatomic {{chem2|H2}} molecules, analogous to halogens and non-metals in the second row of the periodic table, such as nitrogen and oxygen. Diatomic hydrogen is a gas that, at atmospheric pressure, liquefies and solidifies only at very low temperature (20 degrees and 14 degrees above absolute zero, respectively). Eugene Wigner and Hillard Bell Huntington predicted that under an immense pressure of around {{convert|25|GPa|atm psi|abbr=on}} hydrogen would display metallic properties: instead of discrete {{chem2|H2}} molecules (which consist of two electrons bound between two protons), a bulk phase would form with a solid lattice of protons and the electrons delocalized throughout.[2] Since then, producing metallic hydrogen in the laboratory has been described as "...the holy grail of high-pressure physics."[4]

The initial prediction about the amount of pressure needed was eventually shown to be too low.[5] Since the first work by Wigner and Huntington, the more modern theoretical calculations point towards higher but nonetheless potentially accessible metallization pressures of around {{convert|400|GPa|atm psi|abbr=on}}.[6][7]

Liquid metallic hydrogen

Helium-4 is a liquid at normal pressure near absolute zero, a consequence of its high zero-point energy (ZPE). The ZPE of protons in a dense state is also high, and a decline in the ordering energy (relative to the ZPE) is expected at high pressures. Arguments have been advanced by Neil Ashcroft and others that there is a melting point maximum in compressed hydrogen, but also that there might be a range of densities, at pressures around 400 GPa, where hydrogen would be a liquid metal, even at low temperatures.[8][9]

Geng predicted that the ZPE of protons indeed lowers the melting temperature of hydrogen to a minimum of {{convert|200|-|250|K|C}} at pressures of {{convert|500|-|1500|GPa|atm psi|abbr=on}}.[10][11]

Within this flat region there might have an elemental mesophase intermediate between the liquid and solid state, which could metastably be stabilized down to low temperature and enter a supersolid state.[12]

Superconductivity

{{Main|Superconductivity}}{{further|Room temperature superconductor}}

In 1968, Neil Ashcroft suggested that metallic hydrogen might be a superconductor, up to room temperature ({{convert|290|K|C|abbr=on|disp=or}}), far higher than any other known candidate material. This hypothesis is based on an expected strong coupling between conduction electrons and lattice vibrations.[13]

Possibility of novel types of quantum fluid

Presently known "super" states of matter are superconductors, superfluid liquids and gases, and supersolids. Egor Babaev predicted that if hydrogen and deuterium have liquid metallic states, they might have quantum ordered states that cannot be classified as superconducting or superfluid in the usual sense. Instead, they might represent two possible novel types of quantum fluids: superconducting superfluids and metallic superfluids. Such fluids were predicted to have highly unusual reactions to external magnetic fields and rotations, which might provide a means for experimental verification of Babaev's predictions. It has also been suggested that, under the influence of a magnetic field, hydrogen might exhibit phase transitions from superconductivity to superfluidity and vice versa.[14][15][16]

Lithium alloying reduces requisite pressure

In 2009, Zurek et al. predicted that the alloy {{chem2|LiH6}} would be a stable metal at only one quarter of the pressure required to metallize hydrogen, and that similar effects should hold for alloys of type LiHn and possibly "other alkali high-hydride systems", i.e. alloys of type XHn where X is an alkali metal.[17]

This was later verified in AcH8 and LaH10 with Tc approaching 270K [18] leading to speculation that other compounds may even be stable at mere MPa pressures with room temperature superconductivity.

Experimental pursuit

Shock-wave compression, 1996

In March 1996, a group of scientists at Lawrence Livermore National Laboratory reported that they had serendipitously produced the first identifiably metallic hydrogen[19] for about a microsecond at temperatures of thousands of kelvins, pressures of over {{convert|1000000|atm|GPa atm psi|order=out|abbr=on}}, and densities of approximately {{val|0.6|u=g/cm3}}.[20] The team did not expect to produce metallic hydrogen, as it was not using solid hydrogen, thought to be necessary, and was working at temperatures above those specified by metallization theory. Previous studies in which solid hydrogen was compressed inside diamond anvils to pressures of up to {{convert|2500000|atm|GPa atm psi|order=out|abbr=on}}, did not confirm detectable metallization. The team had sought simply to measure the less extreme electrical conductivity changes they expected. The researchers used a 1960s-era light-gas gun, originally employed in guided missile studies, to shoot an impactor plate into a sealed container containing a half-millimeter thick sample of liquid hydrogen. The liquid hydrogen was in contact with wires leading to a device measuring electrical resistance. The scientists found that, as pressure rose to {{convert|1400000|atm|GPa atm psi|order=out|abbr=on}}, the electronic energy band gap, a measure of electrical resistance, fell to almost zero. The band-gap of hydrogen in its uncompressed state is about {{val|15|ul=eV}}, making it an insulator but, as the pressure increases significantly, the band-gap gradually fell to {{val|0.3|u=eV}}. Because the thermal energy of the fluid (the temperature became about {{convert|3000|K|C|disp=or|abbr=on}} due to compression of the sample) was above {{val|0.3|u=eV}}, the hydrogen might be considered metallic.

Other experimental research, 1996–2004

Many experiments are continuing in the production of metallic hydrogen in laboratory conditions at static compression and low temperature. Arthur Ruoff and Chandrabhas Narayana from Cornell University in 1998,[21] and later Paul Loubeyre and René LeToullec from Commissariat à l'Énergie Atomique, France in 2002, have shown that at pressures close to those at the center of the Earth ({{convert|3200000|-|3400000|atm|GPa|order=flip|disp=or|abbr=on}}) and temperatures of {{convert|100|-|300|K|C|abbr=on}}, hydrogen is still not a true alkali metal, because of the non-zero band gap. The quest to see metallic hydrogen in laboratory at low temperature and static compression continues. Studies are also ongoing on deuterium.[22] Shahriar Badiei and Leif Holmlid from the University of Gothenburg have shown in 2004 that condensed metallic states made of excited hydrogen atoms (Rydberg matter) are effective promoters to metallic hydrogen.[23]

Pulsed laser heating experiment, 2008

The theoretically predicted maximum of the melting curve (the prerequisite for the liquid metallic hydrogen) was discovered by Shanti Deemyad and Isaac F. Silvera by using pulsed laser heating.[24] Hydrogen-rich molecular silane ({{chem2|SiH4}}) was claimed to be metallized and become superconducting by M.I. Eremets et al..[25] This claim is disputed, and their results have not been repeated.[26][27]

Observation of liquid metallic hydrogen, 2011

In 2011 Eremets and Troyan reported observing the liquid metallic state of hydrogen and deuterium at static pressures of {{convert|2600000|-|3000000|atm|GPa|order=flip|abbr=on}}.[28][29] This claim was questioned by other researchers in 2012.[30][31]

Z machine, 2015

In 2015, scientists at the Z Pulsed Power Facility announced the creation of metallic deuterium using dense liquid deuterium, an electrical insulator-to-conductor transition associated with an increase in optical reflectivity.[32][33]

Claimed observation of solid metallic hydrogen, 2016

On 5 October 2016, Ranga Dias and Isaac F. Silvera of Harvard University released claims of experimental evidence that solid metallic hydrogen had been synthesised in the laboratory at a pressure of around {{convert|495|GPa|atm psi|lk=on}} using a diamond anvil cell.[34][35] This manuscript was available in October 2016,[36] and a revised version was subsequently published in the journal Science in January 2017.[34][35]

In the preprint version of the paper, Dias and Silvera write:

{{Quote| text=With increasing pressure we observe changes in the sample, going from transparent, to black, to a reflective metal, the latter studied at a pressure of 495 GPa... the reflectance using a Drude free electron model to determine the plasma frequency of 30.1 eV at T = 5.5 K, with a corresponding electron carrier density of {{val|6.7|e=23}} particles/cm3, consistent with theoretical estimates. The properties are those of a metal. Solid metallic hydrogen has been produced in the laboratory. | | Dias & Silvera (2016) [36]}}

Silvera stated that they did not repeat their experiment, since more tests could damage or destroy their existing sample, but assured the scientific community that more tests are coming.[37][38] He also stated that the pressure would eventually be released, in order to find out whether the sample was metastable (i.e., whether it would persist in its metallic state even after the pressure was released).[39]

Shortly after the claim was published in Science, Nature{{'s}} news division published an article stating that some other physicists regarded the result with skepticism. Recently, prominent members of the high pressure research community have criticised the claimed results,[40][41][42][43] questioning the claimed pressures or the presence of metallic hydrogen at the pressures claimed.

In February 2017, it was reported that the sample of claimed metallic hydrogen was lost, after the diamond anvils it was contained between broke.[44]

In August 2017, Silvera and Dias issued an erratum[45] to the Science article, regarding corrected reflectance values due to variations between the optical density of stressed natural diamonds and the synthetic diamonds used in their pre-compression diamond anvil cell.

Experiments on fluid deuterium at the National Ignition Facility, 2018

In August 2018, scientists announced new observations[46] regarding the rapid transformation of fluid deuterium from an insulating to a metallic form below 2000 K. Remarkable agreement is found between the experimental data and the predictions based on Quantum Monte Carlo simulations, which is expected to be the most accurate method to date. This may help researchers better understand giant gas planets, such as Jupiter, Saturn and related exoplanets, since such planets are thought to contain a lot of liquid metallic hydrogen, which may be responsible for their observed powerful magnetic fields.[47][48]

See also

  • Slush hydrogen
  • Solid hydrogen
  • Timeline of hydrogen technologies
  • Juno (spacecraft)

References

1. ^{{cite journal |last=Stevenson |first=D. J. |year=2008 |title=Metallic helium in massive planets |journal=Proceedings of the National Academy of Sciences |volume=105 |issue=32 |pages=11035–11036 |bibcode=2008PNAS..10511035S |doi=10.1073/pnas.0806430105 |doi-access=free |pmc=2516209}}
2. ^{{cite journal |last1=Wigner |first1=E. |last2=Huntington |first2=H. B. |year=1935 |title=On the possibility of a metallic modification of hydrogen |journal=Journal of Chemical Physics |volume=3 |issue=12 |page=764 |bibcode=1935JChPh...3..764W |doi=10.1063/1.1749590}}
3. ^{{cite book |last1=Guillot |first1=T. |last2=Stevenson |first2=D. J. |last3=Hubbard |first3=W. B. |last4=Saumon |first4=D. |date=2004 |chapter=Chapter 3: The Interior of Jupiter |editor1-last=Bagenal |editor1-first=F. |editor2-last=Dowling |editor2-first=T. E. |editor3-last=McKinnon |editor3-first=W. B |title=Jupiter: The Planet, Satellites and Magnetosphere |publisher=Cambridge University Press |isbn=978-0-521-81808-7}}
4. ^{{cite press |date=6 May 1998 |title=High-pressure scientists 'journey' to the center of the Earth, but can't find elusive metallic hydrogen |url=https://www.sciencedaily.com/releases/1998/05/980512080541.htm |publisher=ScienceDaily |accessdate=28 January 2017}}
5. ^{{cite journal |last1=Loubeyre |first1=P. |display-authors=etal |year=1996 |title=X-ray diffraction and equation of state of hydrogen at megabar pressures |journal=Nature |volume=383 |issue=6602 |pages=702–704 |bibcode=1996Natur.383..702L |doi=10.1038/383702a0}}
6. ^{{cite journal |last1=Azadi |first1=S. |last2=Monserrat |first2=B. |last3=Foulkes |first3=W.M.C. |last4=Needs |first4=R.J. |year=2014 |title=Dissociation of High-Pressure Solid Molecular Hydrogen: A Quantum Monte Carlo and Anharmonic Vibrational Study |journal=Phys. Rev. Lett. |volume=112 |issue=16 |pages=165501 |doi=10.1103/PhysRevLett.112.165501 |arxiv=1403.3681 |bibcode=2014PhRvL.112p5501A}}
7. ^{{cite journal |last1=McMinis |first1=J. |last2=Clay |first2=R.C. |last3=Lee |first3=D. |last4=Morales |first4=M.A. |year=2015 |title=Molecular to Atomic Phase Transition in Hydrogen under High Pressure |journal=Phys. Rev. Lett. |volume=114 |issue=10 |pages=105305 |doi=10.1103/PhysRevLett.114.105305 |bibcode=2015PhRvL.114j5305M}}
8. ^{{cite journal |last1=Ashcroft |first1=N. W. |year=2000 |title=The hydrogen liquids |journal=Condensed Matter |volume=12 |issue=8A |pages=A129–A137 |bibcode=2000JPCM...12..129A |doi=10.1088/0953-8984/12/8A/314}}
9. ^{{cite journal |last1=Bonev |first1=S. A. |display-authors=etal |year=2004 |title=A quantum fluid of metallic hydrogen suggested by first-principles calculations |journal=Nature |volume=431 |issue=7009 |pages=669–672 |arxiv=cond-mat/0410425 |bibcode=2004Natur.431..669B |doi=10.1038/nature02968 |pmid=15470423}}
10. ^{{cite journal |last1=Geng |first1=H. Y. |display-authors=etal |year=2015 |title=Lattice stability and high-pressure melting mechanism of dense hydrogen up to 1.5 TPa |journal=Physical Review B |volume=92 |issue=10 |pages=104103 |doi=10.1103/PhysRevB.92.104103|arxiv=1607.00572 }}
11. ^{{cite journal |last1=Geng |first1=H. Y. |display-authors=etal |year=2016 |title=Predicted reentrant melting of dense hydrogen at ultra-high pressures |journal=Scientific Reports |volume=6 |pages=36745 |doi=10.1038/srep36745}}
12. ^{{cite journal |last1=Geng |first1=H. Y. |display-authors=etal |year=2017 |title=Prediction of a mobile solid state in dense hydrogen under high pressures |journal=J. Phys. Chem. Lett. |volume=8 |issue=1 |pages=223–228 |doi=10.1021/acs.jpclett.6b02453|arxiv=1702.00211 }}
13. ^{{cite journal |last1=Ashcroft |first1=N. W. |year=1968 |title=Metallic Hydrogen: A High-Temperature Superconductor? |journal=Physical Review Letters |volume=21 |issue=26 |pages=1748–1749 |bibcode=1968PhRvL..21.1748A |doi=10.1103/PhysRevLett.21.1748}}
14. ^{{cite journal |last1=Babaev |first1=E. |last2=Ashcroft |first2=N. W. |year=2007 |title=Violation of the London law and Onsager–Feynman quantization in multicomponent superconductors |journal=Nature Physics |volume=3 |issue=8 |pages=530–533 |arxiv=0706.2411 |bibcode=2007NatPh...3..530B |doi=10.1038/nphys646}}
15. ^{{cite journal |last1=Babaev |first1=E. |last2=Sudbø |first2=A. |last3=Ashcroft |first3=N. W. |year=2004 |title=A superconductor to superfluid phase transition in liquid metallic hydrogen |journal=Nature |volume=431 |issue=7009 |pages=666–668 |arxiv=cond-mat/0410408 |bibcode=2004Natur.431..666B |doi=10.1038/nature02910 |pmid=15470422}}
16. ^{{cite journal |last1=Babaev |first1=E. |year=2002 |title=Vortices with fractional flux in two-gap superconductors and in extended Faddeev model |journal=Physical Review Letters |volume=89 |issue=6 |page=067001 |arxiv=cond-mat/0111192 |bibcode=2002PhRvL..89f7001B |doi=10.1103/PhysRevLett.89.067001 |pmid=12190602}}
17. ^{{cite journal |last1=Zurek |first1=E. |display-authors=etal |year=2009 |title=A little bit of lithium does a lot for hydrogen |journal=Proceedings of the National Academy of Sciences |volume=106 |issue=42 |pages=17640–3 |bibcode=2009PNAS..10617640Z |doi=10.1073/pnas.0908262106 |doi-access=free |pmc=2764941 |pmid=19805046}}
18. ^{{Cite journal |doi = 10.1063/PT.6.1.20180823b|title = Pressurized superconductors approach room-temperature realm|journal = Physics Today|year = 2018}}
19. ^{{cite journal |last1=Weir |first1=S. T. |last2=Mitchell |first2=A. C. |last3=Nellis |first3=W. J. |year=1996 |title=Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar) |journal=Physical Review Letters |volume=76 |issue=11 |pages=1860–1863 |bibcode=1996PhRvL..76.1860W |doi=10.1103/PhysRevLett.76.1860 |pmid=10060539 |quote=0.28–0.36 mol/cm3 and 2200–4400 K}}
20. ^{{cite web |last=Nellis |first=W. J. |year=2001 |title=Metastable Metallic Hydrogen Glass |url=https://e-reports-ext.llnl.gov/pdf/244531.pdf |work=Lawrence Livermore Preprint UCRL-JC-142360 |osti=15005772 |osti-access=free |quote=minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm3, and 3000 K}}
21. ^{{cite journal |last1=Ruoff |first1=A. L. |display-authors=etal |year=1998 |title=Solid hydrogen at 342 GPa: No evidence for an alkali metal |journal=Nature |volume=393 |issue=6680 |pages=46–49 |bibcode=1998Natur.393...46N |doi=10.1038/29949}}
22. ^{{cite journal |last1=Baer |first1=B.J. |last2=Evans |first2=W.J. |last3=Yoo |first3=C.-S. |year=2007 |title=Coherent anti-Stokes Raman spectroscopy of highly compressed solid deuterium at 300 K: Evidence for a new phase and implications for the band gap |journal=Physical Review Letters |volume=98 |issue=23 |page=235503 |bibcode=2007PhRvL..98w5503B |doi=10.1103/PhysRevLett.98.235503|pmid=17677917 }}
23. ^{{cite journal |last1=Badiei |first1=S. |last2=Holmlid |first2=L. |year=2004 |title=Experimental observation of an atomic hydrogen material with H–H bond distance of 150 pm suggesting metallic hydrogen |journal=Condensed Matter |volume=16 |issue=39 |pages=7017–7023 |bibcode=2004JPCM...16.7017B |doi=10.1088/0953-8984/16/39/034}}
24. ^{{cite journal |last=Deemyad |first=S. |last2=Silvera |first2=I. F |year=2008 |title=The melting line of hydrogen at high pressures |journal=Physical Review Letters |volume=100 |issue=15 |pages=155701 |arxiv=0803.2321 |bibcode=2008PhRvL.100o5701D |doi=10.1103/PhysRevLett.100.155701 |pmid=18518124}}
25. ^{{cite journal |last1=Eremets |first1=M. I. |year=2008 |display-authors=etal |title=Superconductivity in hydrogen dominant materials: Silane |journal=Science |volume=319 |issue=5869 |pages=1506–9 |bibcode=2008Sci...319.1506E |doi=10.1126/science.1153282 |pmid=18339933}}
26. ^{{cite journal |last1=Degtyareva |first1=O. |display-authors=etal |year=2009 |title=Formation of transition metal hydrides at high pressures |journal=Solid State Communications |volume=149 |issue=39–40 |pages=1583–1586 |arxiv=0907.2128 |bibcode=2009SSCom.149.1583D |doi=10.1016/j.ssc.2009.07.022}}
27. ^{{cite journal |last1=Hanfland |first1=M. |last2=Proctor |first2=J. E. |last3=Guillaume |first3=C. L. |last4=Degtyareva |first4=O. |last5=Gregoryanz |first5=E. |year=2011 |title=High-Pressure Synthesis, Amorphization, and Decomposition of Silane |journal=Physical Review Letters |volume=106 |issue=9 |page=095503 |bibcode=2011PhRvL.106i5503H |doi=10.1103/PhysRevLett.106.095503 |pmid=21405634}}
28. ^{{cite journal |last1=Eremets |first1=M. I. |last2=Troyan |first2=I. A. |year=2011 |title=Conductive dense hydrogen |journal=Nature Materials |volume=10 |issue=12 |pages=927–931 |bibcode=2011NatMa..10..927E |doi=10.1038/nmat3175|pmid=22081083 }}
29. ^{{cite journal |last1=Dalladay-Simpson |first1=P. |last2=Howie |first2=R. |last3=Gregoryanz |first3=E. |year=2016 |title=Evidence for a new phase of dense hydrogen above 325 gigapascals |journal=Nature |volume=529 |issue=7584 |pages=63–67 |bibcode=2016Natur.529...63D |doi=10.1038/nature16164 |pmid=26738591}}
30. ^{{cite arXiv |title=Has Metallic Hydrogen Been Made in a Diamond Anvil Cell? |eprint=1201.0407 |class=cond-mat.other |last1=Nellis |first1=W. J. |last2=Ruoff |first2=A. L. |last3=Silvera |first3=I. S. |date=2012 |quote=no evidence for MH}}
31. ^{{cite journal |last1=Amato |first1=I. |year=2012 |title=Metallic hydrogen: Hard pressed |journal=Nature |volume=486 |issue=7402 |pages=174–176 |bibcode=2012Natur.486..174A |doi=10.1038/486174a |doi-access=free |pmid=22699591}}
32. ^{{cite journal |last1=Knudson |first1=M. |last2=Desjarlais |first2=M. |last3=Becker |first3=A. |year=2015 |title=Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium |journal=Science |volume=348 |issue=6242 |pages=1455–1460 |bibcode=2015Sci...348.1455K |doi=10.1126/science.aaa7471|pmid=26113719 }}
33. ^{{Cite news |title=Z machine puts the squeeze on metallic deuterium |url=https://www.chemistryworld.com/research/z-machine-puts-the-squeeze-on-metallic-deuterium/8689.article |newspaper=Chemistry World |access-date=27 January 2017}}
34. ^{{Cite news |last=Crane |first=L. |date=26 January 2017 |title=Metallic hydrogen finally made in lab at mind-boggling pressure |url=https://www.newscientist.com/article/2119442-metallic-hydrogen-finally-made-in-lab-at-mind-boggling-pressure/ |newspaper=New Scientist |access-date=26 January 2017}}
35. ^{{Cite journal |last=Dias |first=R. P. |last2=Silvera |first2=I. F. |date=2017 |title=Observation of the Wigner-Huntington transition to metallic hydrogen |url=http://science.sciencemag.org/content/early/2017/01/25/science.aal1579 |journal=Science |volume=355 |issue= 6326|pages=715–718 |arxiv=1610.01634 |bibcode=2017Sci...355..715D |doi=10.1126/science.aal1579}}
36. ^{{Cite arxiv|last1=Dias|first1=R.|last2=Silvera|first2=I. F.|date=2016|title=Observation of the Wigner-Huntington Transition to Solid Metallic Hydrogen|arxiv=1610.01634|class=cond-mat.mtrl-sci}}
37. ^{{cite web |last=Lemmonick |first=S. |date=27 January 2017 |title=There's Reason To Be Skeptical About Metallic Hydrogen |url=https://www.forbes.com/sites/samlemonick/2017/01/27/theres-reason-to-be-skeptical-about-metallic-hydrogen |work=Forbes |accessdate=28 January 2017}}
38. ^{{Cite journal |last=Castelvecchi |first=D. |date=2017 |title=Physicists doubt bold report of metallic hydrogen |journal=Nature |volume=542 |issue= 7639|page=17 |bibcode=2017Natur.542...17C |doi=10.1038/nature.2017.21379 |doi-access=free}}
39. ^{{cite news |last1=MacDonald |first1=Fiona |title=Metallic hydrogen has been created for the first time |url=http://www.businessinsider.com/metallic-hydrogen-created-2017-1 |accessdate=24 December 2017}}
40. ^{{Cite arXiv|class=cond-mat|first2=V. V.|last2=Struzhkin|title=Comment on Observation of the Wigner-Huntington Transition to Solid Metallic Hydrogen|date=2017|last1=Goncharov|first1=A.F.|eprint=1702.04246}}
41. ^{{Cite arXiv|class=cond-mat|first2=A. P.|last2=Drozdov|title=Comments on the claimed observation of the Wigner-Huntington Transition to Metallic Hydrogen|date=2017|last1=Eremets|first1=M.I.|eprint=1702.05125}}
42. ^{{Cite arXiv|class=cond-mat|first2=F.|last2=Occelli|first3=P.|last3=Dumas|title=Comment on: Observation of the Wigner-Huntington Transition to Metallic Hydrogen|date=2017|last1=Loubeyre|first1=P.|eprint=1702.07192}}
43. ^{{cite journal |last1=Geng |first1=Hua Y. |year=2017 |title=Public debate on metallic hydrogen to boost high pressure research |journal=Matter and Radiation at Extremes |volume=2 |issue=6 |pages=275–277 |doi=10.1016/j.mre.2017.10.001}}
44. ^{{cite web |last=Johnston |first=Ian |date=13 February 2017 |title=World's only piece of a metal that could revolutionise technology has disappeared, scientists reveal |url=https://www.independent.co.uk/news/science/metallic-hydrogen-disappears-technology-revolutions-superconductor-faster-computers-super-efficient-a7593481.html |work=Independent}}
45. ^{{Cite journal |first2=I. F. |last2=Silvera |title=Erratum for the Research Article "Observation of the Wigner-Huntington transition to metallic hydrogen" |date=18 August 2017 |last1=Dias |first1=R. |volume=357 |journal=Science |pages=6352 |url=http://science.sciencemag.org/content/357/6352/eaao5843}}
46. ^{{cite journal |last1=Celliers |first1=Peter M. |last2=Millot |first2=Marius |last3=Brygoo |first3=Stephanie |last4=McWilliams |first4=R. Stewart |last5=Fratanduono |first5=Dayne E. |last6=Rygg |first6=J. Ryan |last7=Goncharov |first7=Alexander F. |last8=Loubeyre |first8=Paul |last9=Eggert |first9=Jon H. |last10=Peterson |first10=J. Luc |last11=Meezan |first11=Nathan B. |last12=Pape |first12=Sebastien Le |last13=Collins |first13=Gilbert W. |authorlink14=Raymond Jeanloz|last14=Jeanloz |first14=Raymond |last15=Hemley |first15=Russell J. |title=Insulator-metal transition in dense fluid deuterium |journal=Science |date=17 August 2018 |volume=361 |issue=6403 |pages=677–682 |doi=10.1126/science.aat0970 |pmid=30115805 |url=http://science.sciencemag.org/content/361/6403/677 |language=en |issn=0036-8075}}
47. ^{{cite news |url=https://www.nytimes.com/2018/08/16/science/metallic-hydrogen-lasers.html |title=Settling Arguments About Hydrogen With 168 Giant Lasers |work=The New York Times |first=Kenneth |last=Chang |date=16 August 2018 |accessdate=18 August 2018}}
48. ^{{cite web |url=https://carnegiescience.edu/news/under-pressure-hydrogen-offers-reflection-giant-planet-interiors |title=Under pressure, hydrogen offers a reflection of giant planet interiors |publisher=Carnegie Institution for Science |date=15 August 2018 |accessdate=19 August 2018}}
{{DEFAULTSORT:Metallic Hydrogen}}

7 : Hydrogen|Phases of matter|Physical chemistry|Hydrogen physics|Allotropes|2016 in science|October 2016 events

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 14:10:19