请输入您要查询的百科知识:

 

词条 Stericated 6-simplexes
释义

  1. Stericated 6-simplex

      Alternate names    Coordinates    Images  

  2. Steritruncated 6-simplex

      Alternate names    Coordinates    Images  

  3. Stericantellated 6-simplex

      Alternate names    Coordinates    Images  

  4. Stericantitruncated 6-simplex

      Alternate names    Coordinates    Images  

  5. Steriruncinated 6-simplex

      Alternate names    Coordinates    Images  

  6. Steriruncitruncated 6-simplex

      Alternate names    Coordinates    Images  

  7. Steriruncicantellated 6-simplex

      Alternate names    Coordinates    Images  

  8. Steriruncicantitruncated 6-simplex

      Alternate names    Coordinates    Images  

  9. Related uniform 6-polytopes

  10. Notes

  11. References

  12. External links

6-simplex
{{CDD>node_1|3|node|3|node|3|node|3|node|3|node}}
Stericated 6-simplex
{{CDD>node_1|3|node|3|node|3|node|3|node_1|3|node}}
Steritruncated 6-simplex
{{CDD>node_1|3|node_1|3|node|3|node|3|node_1|3|node}}
Stericantellated 6-simplex
{{CDD>node_1|3|node|3|node_1|3|node|3|node_1|3|node}}
Stericantitruncated 6-simplex
{{CDD>node_1|3|node_1|3|node_1|3|node|3|node_1|3|node}}
Steriruncinated 6-simplex
{{CDD>node_1|3|node|3|node|3|node_1|3|node_1|3|node}}
Steriruncitruncated 6-simplex
{{CDD>node_1|3|node_1|3|node|3|node_1|3|node_1|3|node}}
Steriruncicantellated 6-simplex
{{CDD>node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}}
Steriruncicantitruncated 6-simplex
{{CDD>node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
Orthogonal projections in A6 Coxeter plane

In six-dimensional geometry, a stericated 6-simplex is a convex uniform 6-polytope with 4th order truncations (sterication) of the regular 6-simplex.

There are 8 unique sterications for the 6-simplex with permutations of truncations, cantellations, and runcinations.

Stericated 6-simplex

Stericated 6-simplex
Typeuniform 6-polytope
Schläfli symbol t0,4{3,3,3,3,3}
Coxeter-Dynkin diagramsnode_1|3|node|3|node|3|node_1|3|node|3|node}}
5-faces105
4-faces700
Cells1470
Faces1400
Edges630
Vertices105
Vertex figure
Coxeter groupA6, [35], order 5040
Propertiesconvex

Alternate names

  • Small cellated heptapeton (Acronym: scal) (Jonathan Bowers)[1]

Coordinates

The vertices of the stericated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,1,1,2). This construction is based on facets of the stericated 7-orthoplex.

Images

{{6-simplex Coxeter plane graphs|t04|150}}

Steritruncated 6-simplex

Steritruncated 6-simplex
Typeuniform 6-polytope
Schläfli symbol t0,1,4{3,3,3,3,3}
Coxeter-Dynkin diagramsnode_1|3|node_1|3|node|3|node|3|node_1|3|node}}
5-faces105
4-faces945
Cells2940
Faces3780
Edges2100
Vertices420
Vertex figure
Coxeter groupA6, [35], order 5040
Propertiesconvex

Alternate names

  • Cellirhombated heptapeton (Acronym: catal) (Jonathan Bowers)[2]

Coordinates

The vertices of the steritruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,1,2,3). This construction is based on facets of the steritruncated 7-orthoplex.

Images

{{6-simplex Coxeter plane graphs|t014|150}}

Stericantellated 6-simplex

Stericantellated 6-simplex
Typeuniform 6-polytope
Schläfli symbol t0,2,4{3,3,3,3,3}
Coxeter-Dynkin diagramsnode_1|3|node|3|node_1|3|node|3|node_1|3|node}}
5-faces105
4-faces1050
Cells3465
Faces 5040
Edges3150
Vertices630
Vertex figure
Coxeter groupA6, [35], order 5040
Propertiesconvex

Alternate names

  • Cellirhombated heptapeton (Acronym: cral) (Jonathan Bowers)[3]

Coordinates

The vertices of the stericantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,2,2,3). This construction is based on facets of the stericantellated 7-orthoplex.

Images

{{6-simplex Coxeter plane graphs|t024|150}}

Stericantitruncated 6-simplex

stericantitruncated 6-simplex
Typeuniform 6-polytope
Schläfli symbol t0,1,2,4{3,3,3,3,3}
Coxeter-Dynkin diagramsnode_1|3|node_1|3|node_1|3|node|3|node|3|node_1}}
5-faces105
4-faces1155
Cells4410
Faces7140
Edges5040
Vertices1260
Vertex figure
Coxeter groupA6, [35], order 5040
Propertiesconvex

Alternate names

  • Celligreatorhombated heptapeton (Acronym: cagral) (Jonathan Bowers)[4]

Coordinates

The vertices of the stericanttruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the stericantitruncated 7-orthoplex.

Images

{{6-simplex Coxeter plane graphs|t0124|150}}

Steriruncinated 6-simplex

steriruncinated 6-simplex
Typeuniform 6-polytope
Schläfli symbol t0,3,4{3,3,3,3,3}
Coxeter-Dynkin diagramsnode_1|3|node|3|node|3|node_1|3|node_1|3|node}}
5-faces105
4-faces700
Cells1995
Faces2660
Edges1680
Vertices420
Vertex figure
Coxeter groupA6, [35], order 5040
Propertiesconvex

Alternate names

  • Celliprismated heptapeton (Acronym: copal) (Jonathan Bowers)[5]

Coordinates

The vertices of the steriruncinated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,2,2,3,3). This construction is based on facets of the steriruncinated 7-orthoplex.

Images

{{6-simplex Coxeter plane graphs|t034|150}}

Steriruncitruncated 6-simplex

steriruncitruncated 6-simplex
Typeuniform 6-polytope
Schläfli symbol t0,1,3,4{3,3,3,3,3}
Coxeter-Dynkin diagramsnode_1|3|node_1|3|node|3|node_1|3|node_1|3|node}}
5-faces105
4-faces945
Cells3360
Faces5670
Edges4410
Vertices1260
Vertex figure
Coxeter groupA6, [35], order 5040
Propertiesconvex

Alternate names

  • Celliprismatotruncated heptapeton (Acronym: captal) (Jonathan Bowers)[6]

Coordinates

The vertices of the steriruncittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the steriruncitruncated 7-orthoplex.

Images

{{6-simplex Coxeter plane graphs|t0134|150}}

Steriruncicantellated 6-simplex

steriruncicantellated 6-simplex
Typeuniform 6-polytope
Schläfli symbol t0,2,3,4{3,3,3,3,3}
Coxeter-Dynkin diagramsnode_1|3|node|3|node_1|3|node_1|3|node_1|3|node}}
5-faces105
4-faces1050
Cells3675
Faces5880
Edges4410
Vertices1260
Vertex figure
Coxeter groupA6, [35], order 5040
Propertiesconvex

Alternate names

  • Bistericantitruncated 6-simplex as t1,2,3,5{3,3,3,3,3}
  • Celliprismatorhombated heptapeton (Acronym: copril) (Jonathan Bowers)[7]

Coordinates

The vertices of the steriruncitcantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the steriruncicantellated 7-orthoplex.

Images

{{6-simplex Coxeter plane graphs|t0234|150}}

Steriruncicantitruncated 6-simplex

Steriuncicantitruncated 6-simplex
Typeuniform 6-polytope
Schläfli symbol t0,1,2,3,4{3,3,3,3,3}
Coxeter-Dynkin diagramsnode_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}
5-faces105
4-faces1155
Cells4620
Faces8610
Edges7560
Vertices 2520
Vertex figure
Coxeter groupA6, [35], order 5040
Propertiesconvex

Alternate names

  • Great cellated heptapeton (Acronym: gacal) (Jonathan Bowers)[8]

Coordinates

The vertices of the steriruncicantittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,2,3,4,5). This construction is based on facets of the steriruncicantitruncated 7-orthoplex.

Images

{{6-simplex Coxeter plane graphs|t01234|150}}

Related uniform 6-polytopes

The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.

{{Heptapeton family}}

Notes

1. ^Klitzing, (x3o3o3o3x3o - scal)
2. ^Klitzing, (x3x3o3o3x3o - catal)
3. ^Klitzing, (x3o3x3o3x3o - cral)
4. ^Klitzing, (x3x3x3o3x3o - cagral)
5. ^Klitzing, (x3o3o3x3x3o - copal)
6. ^Klitzing, (x3x3o3x3x3o - captal)
7. ^Klitzing, ( x3o3x3x3x3o - copril)
8. ^Klitzing, (x3x3x3x3x3o - gacal)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}}  
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polypeta.htm|6D|uniform polytopes (polypeta)}}

External links

  • [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
  • Multi-dimensional Glossary
{{Polytopes}}

1 : 6-polytopes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/16 7:15:41