词条 | Strictly determined game |
释义 |
In game theory, a strictly determined game is a two-player zero-sum game that has at least one Nash equilibrium with both players using pure strategies. The value of a strictly determined game is equal to the value of the equilibrium outcome.[1][2][3][4][5] Examples
NotesThe study and classification of strictly determined games is distinct from the study of Determinacy, which is a subfield of set theory. See also
References1. ^{{cite web|url=http://people.hofstra.edu/Stefan_waner/RealWorld/Summary9.html|title=Chapter G Summary Finite|last=Waner|first=Stefan|date=1995–1996|accessdate=24 April 2009}} {{Game theory}}{{Mathapplied-stub}}2. ^{{cite book|title=Game Theory and Politics|author=Steven J. Brams|pages=5–6|chapter=Two person zero-sum games with saddlepoints|publisher=Courier Dover Publications|year=2004|isbn=9780486434971}} 3. ^{{cite book|title=A gentle introduction to game theory|author=Saul Stahl|page=54|chapter=Solutions of zero-sum games|publisher=AMS Bookstore|year=1999|isbn=9780821813393}} 4. ^{{cite book|title=An Introduction to Linear Programming and the Theory of Games|author=Abraham M. Glicksman|page=94|chapter=Elementary aspects of the theory of games|publisher=Courier Dover Publications|year=2001|isbn=9780486417103}} 5. ^{{cite book|title=Fun mathematics on your microcomputer|author=Czes Kośniowski|page=68|chapter=Playing the Game|publisher=Cambridge University Press|year=1983|isbn=9780521274517}} 1 : Game theory game classes |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。