请输入您要查询的百科知识:

 

词条 Subwavelength-diameter optical fibre
释义

  1. Name

  2. Manufacturing

  3. Handling

  4. Applications

  5. See also

  6. References

{{use British English|date=September 2016}}{{Refimprove
|date = September 2016
}}

A subwavelength-diameter optical fibre (SDF or SDOF) is an optical fibre whose diameter is less than the wavelength of the light being propagated through it. An SDF usually consists of long thick parts (same as conventional optical fibres) at both ends, transition regions (tapers) where the fibre diameter gradually decreases down to the subwavelength value, and a subwavelength-diameter waist, which is the main acting part.

Name

There is no general agreement on how these optical elements are to be named; different groups prefer to emphasize different properties of such fibres, sometimes even using different terms. The names in use include subwavelength waveguide,[1] subwavelength optical wire,[2] subwavelength-diameter silica wire,[3] subwavelength diameter fibre taper[4][5]

(photonic) wire waveguide,[6][7] photonic wire,[8][9][10] photonic nanowire,[11][12][13] optical nanowires,[14] optical fibre nanowires[15]

tapered (optical) fibre,[16][17][18][19] fibre taper,[20]

submicron-diameter silica fibre[21][22]

ultrathin optical fibres,[23]

optical nanofibre,[24]

optical microfibres[25]

submicron fibre waveguides,[26]

micro/nano optical wires (MNOW)

The term waveguide can be applied not only to fibres, but also to other waveguiding structures such as silicon photonic subwavelength waveguides.[27] The term submicron is often synonymous to subwavelength, as the majority of experiments are carried out using light with a wavelength between 0.8 and 1.6 µm.[11] All the names with the prefix nano- are somewhat misleading, since it is usually applied to objects with dimensions on the scale of nanometers (e.g., nanoparticle, nanotechnology). The characteristic behaviour of the SDF appears when the fibre diameter is about half of the wavelength of light. That is why the term subwavelength is the most appropriate for these objects.{{original research inline|date=September 2016}}

Manufacturing

An SDF is usually created by tapering a commercial optical fibre. Special pulling machines accomplish the process.

An optical fibre usually consists of a core, a cladding, and a protective coating. Before pulling a fibre, its coating is removed (i.e., the fibre is stripped). The ends of the bare fibre are fixed onto movable "translation" stages on the machine. The middle of the fibre (between the stages) is then heated with a flame or a laser beam; at the same time, the translation stages move in opposite directions. The glass melts and the fibre is elongated, while its diameter decreases.

Using the described method, waists between 1 and 10 nm in length and diameters down to 100 nm are obtained.

Handling

Being extremely thin, an SDF is also extremely fragile. Therefore, an SDF is usually mounted onto a special frame immediately after pulling and is never detached from this frame.

Dust, however, may attach to the surface of an SDF. If significant laser power is coupled into the fibre, the dust particles will scatter light in the evanescent field, heat up, and may thermally destroy the waist. In order to prevent this, SDFs are pulled and used in dust-free environments such as flowboxes or vacuum chambers.

Applications

{{expand section|date=September 2016}}

Applications include sensors.[28]

nonlinear optics,

fibre couplers,

atom trapping and guiding,[29] and.[30]

quantum interface for quantum information processing.[31] and all-optical switches.[32]

See also

  • Double-clad fiber

References

1. ^{{Cite journal|last1 = Foster|first1 = M. A.|last2 = Gaeta|first2 = A. L.|doi = 10.1364/OPEX.12.003137|title = Ultra-low threshold supercontinuum generation in sub-wavelength waveguides|journal = Optics Express|volume = 12|issue = 14|pages = 3137–3143|year = 2004|pmid = 19483834|pmc =|bibcode = 2004OExpr..12.3137F }} {{open access}}
2. ^{{Cite journal|last1 = Jung|first1 = Y.|last2 = Brambilla|first2 = G.|last3 = Richardson|first3 = D. J.|doi = 10.1364/OE.16.014661|title = Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter|journal = Optics Express|volume = 16|issue = 19|pages = 14661–14667|year = 2008|pmid = 18795003|pmc =|bibcode = 2008OExpr..1614661J }} {{open access}}
3. ^{{Cite journal|last1 = Tong|first1 = L.|last2 = Gattass|first2 = R. R.|last3 = Ashcom|first3 = J. B.|last4 = He|first4 = S.|last5 = Lou|first5 = J.|last6 = Shen|first6 = M.|last7 = Maxwell|first7 = I.|last8 = Mazur|first8 = E.|doi = 10.1038/nature02193|title = Subwavelength-diameter silica wires for low-loss optical wave guiding|journal = Nature|volume = 426|issue = 6968|pages = 816–819|year = 2003|pmid = 14685232|pmc =|url=ftp://www.ece.buap.mx/pub/profesor/academ07/BOOK/8.pdf|bibcode = 2003Natur.426..816T }}
4. ^{{Cite journal|last1 = Mägi|first1 = E. C.|last2 = Fu|first2 = L. B.|last3 = Nguyen|first3 = H. C.|last4 = Lamont|first4 = M. R.|last5 = Yeom|first5 = D. I.|last6 = Eggleton|first6 = B. J.|doi = 10.1364/OE.15.010324|title = Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers|journal = Optics Express|volume = 15|issue = 16|pages = 10324–10329|year = 2007|pmid = 19547382|pmc =|bibcode = 2007OExpr..1510324M }} {{open access}}
5. ^{{Cite journal|last1 = Zhang|first1 = L.|last2 = Gu|first2 = F.|last3 = Lou|first3 = J.|last4 = Yin|first4 = X.|last5 = Tong|first5 = L.|title = Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film|doi = 10.1364/OE.16.013349|journal = Optics Express|volume = 16|issue = 17|pages = 13349–13353|year = 2008|pmid = 18711572|pmc =|bibcode = 2008OExpr..1613349Z }} {{open access}}
6. ^{{Cite journal|last1 = Liang|first1 = T. K.|last2 = Nunes|first2 = L. R.|last3 = Sakamoto|first3 = T.|last4 = Sasagawa|first4 = K.|last5 = Kawanishi|first5 = T.|last6 = Tsuchiya|first6 = M.|last7 = Priem|first7 = G. R. A.|last8 = Van Thourhout|first8 = D.|last9 = Dumon|first9 = P.|last10 = Baets|first10 = R.|last11 = Tsang|first11 = H. K.|doi = 10.1364/OPEX.13.007298|title = Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides|journal = Optics Express|volume = 13|issue = 19|pages = 7298–7303|year = 2005|pmid = 19498753|pmc =|bibcode = 2005OExpr..13.7298L |hdl = 1854/LU-327594}} {{open access}}
7. ^{{Cite journal|vauthors=Espinola R, Dadap J, Osgood R Jr, McNab S, Vlasov Y|title = C-band wavelength conversion in silicon photonic wire waveguides|doi = 10.1364/OPEX.13.004341|journal = Optics Express|volume = 13|issue = 11|pages = 4341–4349|year = 2005|pmid = 19495349|bibcode = 2005OExpr..13.4341E }} {{open access}}
8. ^{{Cite journal|last1 = Lizé|first1 = Y. K.|last2 = Mägi|first2 = E. C.|last3 = Ta'Eed|first3 = V. G.|last4 = Bolger|first4 = J. A.|last5 = Steinvurzel|first5 = P.|last6 = Eggleton|first6 = B.|doi = 10.1364/OPEX.12.003209|title = Microstructured optical fiber photonic wires with subwavelength core diameter|journal = Optics Express|volume = 12|issue = 14|pages = 3209–3217|year = 2004|pmid = 19483844|pmc =|bibcode = 2004OExpr..12.3209L }} {{open access}}
9. ^{{Cite journal|last1 = Zheltikov|first1 = A.|title = Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires|doi = 10.1364/JOSAB.22.001100|journal = Journal of the Optical Society of America B|volume = 22|issue = 5|pages = 1100|year = 2005|pmid =|pmc =|bibcode = 2005JOSAB..22.1100Z }} {{closed access}}
10. ^{{Cite journal|last1 = Konorov|first1 = S. O.|last2 = Akimov|first2 = D. A.|last3 = Serebryannikov|first3 = E. E.|last4 = Ivanov|first4 = A. A.|last5 = Alfimov|first5 = M. V.|last6 = Dukel'Skii|first6 = K. V.|last7 = Khokhlov|first7 = A. V.|last8 = Shevandin|first8 = V. S.|last9 = Kondrat'Ev|first9 = Y. N.|last10 = Zheltikov|first10 = A. M.|doi = 10.1002/lapl.200410176|title = High-order modes of photonic wires excited by the Cherenkov emission of solitons|journal = Laser Physics Letters|volume = 2|issue = 5|pages = 258–261|year = 2005|pmid =|pmc =|bibcode = 2005LaPhL...2..258K }} {{closed access}}
11. ^{{Cite journal|last1 = Foster|first1 = M. A.|last2 = Turner|first2 = A. C.|last3 = Lipson|first3 = M.|last4 = Gaeta|first4 = A. L.|title = Nonlinear optics in photonic nanowires|doi = 10.1364/OE.16.001300|journal = Optics Express|volume = 16|issue = 2|pages = 1300–1320|year = 2008|pmid = 18542203|pmc =|bibcode = 2008OExpr..16.1300F }} {{open access}}
12. ^{{Cite journal|last1 = Wolchover|first1 = N. A.|last2 = Luan|first2 = F.|last3 = George|first3 = A. K.|last4 = Knight|first4 = J. C.|last5 = Omenetto|first5 = F. G.|title = High nonlinearity glass photonic crystal nanowires|doi = 10.1364/OE.15.000829|journal = Optics Express|volume = 15|issue = 3|pages = 829–833|year = 2007|pmid = 19532307|pmc =|bibcode = 2007OExpr..15..829W }} {{open access}}
13. ^{{Cite journal|last1 = Tong|first1 = L.|last2 = Hu|first2 = L.|last3 = Zhang|first3 = J.|last4 = Qiu|first4 = J.|last5 = Yang|first5 = Q.|last6 = Lou|first6 = J.|last7 = Shen|first7 = Y.|last8 = He|first8 = J.|last9 = Ye|first9 = Z.|doi = 10.1364/OPEX.14.000082|title = Photonic nanowires directly drawn from bulk glasses|journal = Optics Express|volume = 14|issue = 1|pages = 82–87|year = 2006|pmid = 19503319|pmc =|bibcode = 2006OExpr..14...82T }} {{open access}}
14. ^{{Cite journal|last1 = Siviloglou|first1 = G. A.|last2 = Suntsov|first2 = S.|last3 = El-Ganainy|first3 = R.|last4 = Iwanow|first4 = R.|last5 = Stegeman|first5 = G. I.|last6 = Christodoulides|first6 = D. N.|last7 = Morandotti|first7 = R.|last8 = Modotto|first8 = D.|last9 = Locatelli|first9 = A.|last10 = De Angelis|first10 = C.|last11 = Pozzi|first11 = F.|last12 = Stanley|first12 = C. R.|last13 = Sorel|first13 = M.|title = Enhanced third-order nonlinear effects in optical AlGaAs nanowires|doi = 10.1364/OE.14.009377|journal = Optics Express|volume = 14|issue = 20|pages = 9377–9384|year = 2006|pmid = 19529322|pmc =|bibcode = 2006OExpr..14.9377S }} {{open access}}
15. ^{{cite web|url=http://www.orc.soton.ac.uk/ofnrd.html|title=Optical Fibre Nanowires and Related Devices Group|archiveurl=https://archive.today/20070220021709/http://www.orc.soton.ac.uk/ofnrd.html|archivedate=2007-02-20|publisher=University of Southampton|deadurl=yes|df=}}
16. ^{{Cite journal|last1 = Dumais|first1 = P.|last2 = Gonthier|first2 = F.|last3 = Lacroix|first3 = S.|last4 = Bures|first4 = J.|last5 = Villeneuve|first5 = A.|last6 = Wigley|first6 = P. G. J.|last7 = Stegeman|first7 = G. I.|doi = 10.1364/OL.18.001996|title = Enhanced self-phase modulation in tapered fibers|journal = Optics Letters|volume = 18|issue = 23|pages = 1996|year = 1993|pmid = 19829470|pmc =|bibcode = 1993OptL...18.1996D }} {{closed access}}
17. ^{{Cite journal|last1 = Cordeiro|first1 = C. M. B.|last2 = Wadsworth|first2 = W. J.|last3 = Birks|first3 = T. A.|last4 = Russell|first4 = P. S. J.|title = Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser|doi = 10.1364/OL.30.001980|journal = Optics Letters|volume = 30|issue = 15|pages = 1980–1982|year = 2005|pmid = 16092239|pmc =|bibcode = 2005OptL...30.1980C }} {{closed access}}
18. ^{{Cite journal|last1 = Dudley|first1 = J. M.|last2 = Coen|first2 = S.|doi = 10.1109/JSTQE.2002.1016369|title = Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers|journal = IEEE Journal of Selected Topics in Quantum Electronics|volume = 8|issue = 3|pages = 651–659|year = 2002|pmid =|pmc =|bibcode = 2002IJSTQ...8..651D }} {{closed access}}
19. ^{{Cite journal|last1 = Kolesik|first1 = M.|last2 = Wright|first2 = E. M.|last3 = Moloney|first3 = J. V.|doi = 10.1007/s00340-004-1551-1|title = Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers|journal = Applied Physics B|volume = 79|issue = 3|pages = 293–300|year = 2004|pmid =|pmc = }} {{closed access}}
20. ^{{Cite journal|last1 = Wadsworth|first1 = W. J.|last2 = Ortigosa-Blanch|first2 = A.|last3 = Knight|first3 = J. C.|last4 = Birks|first4 = T. A.|last5 = Man|first5 = T. -P. M.|last6 = Russell|first6 = P. S. J.|doi = 10.1364/JOSAB.19.002148|title = Supercontinuum generation in photonic crystal fibers and optical fiber tapers: A novel light source|journal = Journal of the Optical Society of America B|volume = 19|issue = 9|pages = 2148|year = 2002|pmid =|pmc =|bibcode = 2002JOSAB..19.2148W }} {{open access}}
21. ^{{Cite journal|last1 = Shi|first1 = L.|last2 = Chen|first2 = X.|last3 = Liu|first3 = H.|last4 = Chen|first4 = Y.|last5 = Ye|first5 = Z.|last6 = Liao|first6 = W.|last7 = Xia|first7 = Y.|doi = 10.1364/OE.14.005055|title = Fabrication of submicron-diameter silica fibers using electric strip heater|journal = Optics Express|volume = 14|issue = 12|pages = 5055–5060|year = 2006|pmid = 19516667|pmc =|bibcode = 2006OExpr..14.5055S }} {{open access}}
22. ^{{Cite journal |doi = 10.1364/OPEX.12.000776|last1 = Mägi|first1 = E.|last2 = Steinvurzel|first2 = P.|last3 = Eggleton|first3 = B.|title = Tapered photonic crystal fibers|journal = Optics Express|volume = 12|issue = 5|pages = 776–784|year = 2004|pmid = 19474885|bibcode = 2004OExpr..12..776M }} {{open access}}
23. ^{{Cite journal|last1 = Sagué|first1 = G.|last2 = Baade|first2 = A.|last3 = Rauschenbeutel|first3 = A.|doi = 10.1088/1367-2630/10/11/113008|title = Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres|journal = New Journal of Physics|volume = 10|issue = 11|pages = 113008|year = 2008|pmid =|pmc =|bibcode = 2008NJPh...10k3008S|arxiv = 0806.3909 }} {{open access}}
24. ^{{Cite journal|last1 = Nayak|first1 = K. P.|last2 = Melentiev|first2 = P. N.|last3 = Morinaga|first3 = M.|last4 = Kien|first4 = F. L.|last5 = Balykin|first5 = V. I.|last6 = Hakuta|first6 = K.|doi = 10.1364/OE.15.005431|title = Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence|journal = Optics Express|volume = 15|issue = 9|pages = 5431–5438|year = 2007|pmid = 19532797|pmc =|bibcode = 2007OExpr..15.5431N }} {{open access}}
25. ^{{Cite journal|last1 = Xu|first1 = F.|last2 = Horak|first2 = P.|last3 = Brambilla|first3 = G.|doi = 10.1364/OE.15.007888|title = Optical microfiber coil resonator refractometric sensor|journal = Optics Express|volume = 15|issue = 12|pages = 7888–7893|year = 2007|pmid = 19547115|pmc =|bibcode = 2007OExpr..15.7888X }} {{open access}}
26. ^{{Cite journal|last1 = Leon-Saval|first1 = S. G.|last2 = Birks|first2 = T. A.|last3 = Wadsworth|first3 = W. J.|last4 = St j Russell|first4 = P.|last5 = Mason|first5 = M. W.|title = Supercontinuum generation in submicron fibre waveguides|doi = 10.1364/OPEX.12.002864|journal = Optics Express|volume = 12|issue = 13|pages = 2864–2869|year = 2004|pmid = 19483801|pmc =|bibcode = 2004OExpr..12.2864L }} {{open access}}
27. ^{{Cite journal|last1 = Koos|first1 = C.|last2 = Jacome|first2 = L.|last3 = Poulton|first3 = C.|last4 = Leuthold|first4 = J.|last5 = Freude|first5 = W.|title = Nonlinear silicon-on-insulator waveguides for all-optical signal processing|doi = 10.1364/OE.15.005976|journal = Optics Express|volume = 15|issue = 10|pages = 5976–5990|year = 2007|pmid = 19546900|pmc =|bibcode = 2007OExpr..15.5976K }} {{open access}}
28. ^{{cite journal|first=K. P.|last=Nayak|first2=P. N.|last2=Melentiev|first3=M.|last3=Morinaga|first4=Fam|last4=Le Kien|first5=V. I.|last5=Balykin|first6=K.|last6=Hakuta|title=Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence|journal=Optics Express|volume=15|issue=9|pages=5431–5438|year=2007|doi=10.1364/OE.15.005431|bibcode=2007OExpr..15.5431N|pmid=19532797}}
29. ^{{cite journal|last=Dawkins|first=S. T.|first2=R.|last2=Mitsch|first3=D.|last3=Reitz|first4=E.|last4=Vetsch|first5=A.|last5=Rauschenbeutel|title=Dispersive Optical Interface Based on Nanofiber-Trapped Atoms|journal=Phys. Rev. Lett.|year=2011|volume=107|issue=24|page=243601|doi=10.1103/PhysRevLett.107.243601|pmid=22242999|bibcode=2011PhRvL.107x3601D|arxiv=1108.2469 }}
30. ^{{cite journal|first=A.|last=Goban|first2=K. S.|last2=Choi|first3=D. J.|last3=Alton|first4=D.|last4=Ding|first5=C.|last5=Lacroûte|first6=M.|last6=Pototschnig|first7=T.|last7=Thiele|first8=N. P.|last8=Stern|first9=H. J.|last9=Kimble|title=Demonstration of a State-Insensitive, Compensated Nanofiber Trap|journal=Phys. Rev. Lett.|year=2012|volume=109|issue=3|page=033603|doi=10.1103/PhysRevLett.109.033603|pmid=22861848|bibcode=2012PhRvL.109c3603G|arxiv=1203.5108 }}
31. ^See, for example, a theoretical analysis with applications to precise quantum nondemolition measurement{{cite journal|title=Dispersive response of atoms trapped near the surface of an optical nanofiber with applications to quantum nondemolition measurement and spin squeezing|journal=Physical Review A|year=2016|last=Qi|first=Xiaodong|last2=Baragiola|first2=Ben Q.|last3=Jessen|first3=Poul S.|last4=Deutsch|first4=Ivan H.|volume=93|issue=2|page=023817|doi=10.1103/PhysRevA.93.023817|bibcode=2016PhRvA..93b3817Q|arxiv=1509.02625 }}
32. ^{{cite journal|first=Fam|last=Le Kien|first2=A.|last2=Rauschenbeutel|title=Nanofiber-based all-optical switches|journal=Phys. Rev. A|volume=93|issue=1|page=013849|year=2016|doi=10.1103/PhysRevA.93.013849|bibcode=2016PhRvA..93a3849L|arxiv=1604.05782 }}

2 : Optical fiber|Photonics

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/25 12:35:24