词条 | Supernatural number |
释义 |
In mathematics, the supernatural numbers, sometimes called generalized natural numbers or Steinitz numbers, are a generalization of the natural numbers. They were used by Ernst Steinitz[1] in 1910 as a part of his work on field theory. A supernatural number is a formal product: where runs over all prime numbers, and each is zero, a natural number or infinity. Sometimes is used instead of . If no and there are only a finite number of non-zero then we recover the positive integers. Slightly less intuitively, if all are , we get zero. Supernatural numbers extend beyond natural numbers by allowing the possibility of infinitely many prime factors, and by allowing any given prime to divide "infinitely often," by taking that prime's corresponding exponent to be the symbol . There is no natural way to add supernatural numbers, but they can be multiplied, with . Similarly, the notion of divisibility extends to the supernaturals with if for all . The notion of the least common multiple and greatest common divisor can also be generalized for supernatural numbers, by defining With these definitions, the gcd or lcm of infinitely many natural numbers (or supernatural numbers) is a supernatural number. We can also extend the usual -adic order functions to supernatural numbers by defining for each Supernatural numbers are used to define orders and indices of profinite groups and subgroups, in which case many of the theorems from finite group theory carry over exactly. They are used to encode the algebraic extensions of a finite field.[2] They are also used implicitly in many number-theoretical proofs, such as the density of the square-free integers and bounds for odd perfect numbers.{{cn|date=January 2016}} Supernatural numbers also arise in the classification of uniformly hyperfinite algebras. See also
References1. ^{{cite journal |last=Steinitz |first=Ernst |authorlink=Ernst Steinitz |date=1910 |language=German |title=Algebraische Theorie der Körper |journal=Journal für die reine und angewandte Mathematik |jfm=41.0445.03 |issn=0075-4102 |volume=137 |pages=167–309 |url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002167042}} 2. ^Brawley & Schnibben (1989) pp.25-26
External links
1 : Number theory |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。