词条 | T(1) theorem |
释义 |
In mathematics, the T(1) theorem, first proved by {{harvtxt|David|Journé|1984}}, describes when an operator T given by a kernel can be extended to a bounded linear operator on the Hilbert space L2(Rn). The name T(1) theorem refers to a condition on the distribution T(1), given by the operator T applied to the function 1. StatementSuppose that T is a continuous operator from Schwartz functions on Rn to tempered distributions, so that T is given by a kernel K which is a distribution. Assume that the kernel is standard, which means that off the diagonal it is given by a function satisfying certain conditions. Then the T(1) theorem states that T can be extended to a bounded operator on the Hilbert space L2(Rn) if and only if the following conditions are satisfied:
References
1 : Theorems in functional analysis |
随便看 |
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。