词条 | Time-inhomogeneous hidden Bernoulli model |
释义 |
Time-inhomogeneous hidden Bernoulli model (TI-HBM) is an alternative to hidden Markov model (HMM) for automatic speech recognition. Contrary to HMM, the state transition process in TI-HBM is not a Markov-dependent process, rather it is a generalized Bernoulli (an independent) process. This difference leads to elimination of dynamic programming at state-level in TI-HBM decoding process. Thus, the computational complexity of TI-HBM for probability evaluation and state estimation is (instead of in the HMM case, where and are number of states and observation sequence length respectively). The TI-HBM is able to model acoustic-unit duration (e.g. phone/word duration) by using a built-in parameter named survival probability. The TI-HBM is simpler and faster than HMM in a phoneme recognition task, but its performance is comparable to HMM. For details, see [https://dx.doi.org/10.1016/j.sigpro.2008.09.004] or [https://dx.doi.org/10.1109/ICASSP.2008.4518556]. References[1] Jahanshah Kabudian, M. Mehdi Homayounpour, S. Mohammad Ahadi, "Bernoulli versus Markov: Investigation of state transition regime in switching-state acoustic models," Signal Processing, vol. 89, no. 4, pp. 662–668, April 2009. [2] Jahanshah Kabudian, M. Mehdi Homayounpour, S. Mohammad Ahadi, "Time-inhomogeneous hidden Bernoulli model: An alternative to hidden Markov model for automatic speech recognition," Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4101–4104, Las Vegas, Nevada, USA, March 2008. 2 : Speech recognition|Hidden stochastic models |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。