请输入您要查询的百科知识:

 

词条 Top-hat filter
释义

  1. Real space

     Analogue implementations 

  2. Fourier space

  3. Related functions

  4. See also

  5. References

The name Top-hat filter refers to several real-space or Fourier space filtering techniques (not to be confused with the top-hat transform). The name top-hat originates from the shape of the filter, which is a rectangle function, when viewed in the domain in which the filter is constructed.

Real space

In real-space the filter performs nearest-neighbour filtering, incorporating components from neighbouring y-function values. However, despite their ease of implementation their practical use is limited as the real-space representation of a top-hat filter is the sinc function, which has the often undesirable effect of incorporating non-local frequencies.

Analogue implementations

Exact non-digital implementations are only theoretically possible. Top-hat filters can be constructed by chaining theoretical low-band and high-band filters. In practice, an approximate top-hat filter can be constructed in analogue hardware using approximate low-band and high-band filters.

Fourier space

In Fourier space, a top hat filter selects a band of signal of desired frequency by the specification of a lower and upper bounding frequencies. Top-hat filters are particularly easy to implement digitally.

Related functions

The top hat function can be generated by differentiating a linear ramp function of width . The limit of then becomes the Dirac delta function. Its real-space form is the same as the moving average, with the exception of not introducing a shift in the output function.

See also

  • Boxcar averager
  • Rectangular function
  • Step function
  • Boxcar function

References

{{Unreferenced|date=July 2008}}

1 : Linear filters

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/17 23:08:06