词条 | Turán's inequalities |
释义 |
In mathematics, Turán's inequalities are some inequalities for Legendre polynomials found by {{harvs|txt=yes|first=Paul |last=Turán|authorlink=Pál Turán|year=1950}} (and first published by {{harvtxt|Szegö|1948}}). There are many generalizations to other polynomials, often called Turán's inequalities, given by {{harvs|mr=0040487 |last=Beckenbach|first= E. F.|last2= Seidel|first2= W.|last3= Szász|first3= Otto |title=Recurrent determinants of Legendre and of ultraspherical polynomials |journal=Duke Math. J.|volume= 18|year=1951|pages= 1–10}} and other authors. If {{math|Pn}} is the {{mvar|n}}th Legendre polynomial, Turán's inequalities state that For Hn, the nth Hermite polynomial, Turán's inequalities are whilst for Chebyshev polynomials they are See also
References
|last=Beckenbach|first= E. F.|last2= Seidel|first2= W.|last3= Szász|first3= Otto |title=Recurrent determinants of Legendre and of ultraspherical polynomials |journal=Duke Math. J.|volume= 18|year=1951|pages= 1–10|doi=10.1215/S0012-7094-51-01801-7}}
|last=Szegö|first= G. |title=On an inequality of P. Turán concerning Legendre polynomials |journal=Bull. Amer. Math. Soc. |year=1948|pages= 401–405 |doi=10.1090/S0002-9904-1948-09017-6|volume=54|issue=4 }}
|last=Turán|first= Paul |title=On the zeros of the polynomials of Legendre |journal=Časopis Pěst. Mat. Fys. |volume=75|year=1950|pages= 113–122}}{{DEFAULTSORT:Turan's inequalities}}{{mathanalysis-stub}} 2 : Orthogonal polynomials|Inequalities |
随便看 |
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。